Eastern University, Sri Lanka

×

16 OCT 2008

Second Year First Semester Examination in Agriculture 2007/2008

CSC 2103 Introductory Statistics

Answer the all questions

Time: Two hours

1.

- a) Define the term contingency table.
- b) Following table shows a random sample of leaves classified by rust infestation and field.

Contingency table for rust infestation and field

Field		Rust	Non rust	
	A	372	24	
1.	B	330	48	

Find the expected frequencies.

Does the rust infestation vary between fields?

2. An experiment was conducted to compare five rice varieties A, B, C, D and E. The yield was recorded as follows in a completely random design.

		Yield()	Kg)	Calculate the
Variety	R1	R2	R3	R4.
А	5	4	4	• 4
В	3	3	4	3.5
C	6	6.5	7	6
D	8	7	7	7
E	4	4.5	5	4

a) State the null hypothesis and alternate hypothesis for the above experiment.

b) Construct the ANOVA table for this experiment.

c) Interpret your result at P=0.05.

3. An experiment was conducted to study the effect of a certain drug in lowering heart rate in adults. The independent variable is dosage in milligrams of the drug; the dependent variable is the difference between the lowest rate following administration of the drug and a pre drug control. The following data were collected.

· · · · · · · · · · · · · · · · · · ·	X- Dosage (mg)	Y-Reduction in heart rate (beats min ⁻¹)	
	0.5	10	
	0.75	8	
	1.0	12	
	1.25	12	
	1.5	14	
	1.75	12	
	2.0	16	
	2.25	18	
	2.5	17	
	2.75	20	
	3.0	18	
	3.25	20	
	3.5	21	

- a) Fit the regression line.
- b) Calculate the correlation coefficient and comment on the relationship.
- c) Test the significance of the regression coefficient.
- 4. Height of trees which are grown in different locations is given below.

Location		Tree height(m)					
Wood	8	9.5	7.5	10	8.5	11	
Solitary	7	8	7.5	8	7.5	6	

a) Is there significant difference in tree height grown in two different locations?

b) Interpret your result at P=0.05.