27 OCT 2017

## EASTERN UNIVERSITY, SRI LANKA

 DEPARTMENT OF MATHEMATICSFIRST EXAMINATION IN SCIENCE - 2014/2015
FIRST SEMESTER (Sep./Oct., 2016)
103 - VECTOR ALGEBRA \& CLASSICAL MECHANICS I (PROPER)
er all questions

(a) For any three vectors $\underline{a}, \underline{b}$ and $\underline{c}$, prove that the identity

$$
\underline{a} \wedge(\underline{b} \wedge \underline{c})=(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{a} \cdot \underline{b}) \underline{c}
$$

Let $\underline{l}, \underline{m}$ and $\underline{n}$ be three non zero and non co-planer vectors such that any two of them are not parallel. By considering the vector product $(\underline{r} \wedge \underline{l}) \wedge(\underline{m} \wedge \underline{n})$, prove that any vector $\underline{r}$ can be expressed in the form

$$
\underline{r}=(\underline{r} \cdot \underline{\alpha}) \underline{l}+(\underline{r} \cdot \underline{\beta}) \underline{m}+(\underline{r} \cdot \underline{\gamma}) \underline{n} .
$$

Hence find the vectors $\underline{\alpha}, \underline{\beta}$ and $\underline{\gamma}$ in terms of $\underline{l}, \underline{m}$ and $\underline{n}$.
(b) Find the equation of the plane passing through three given terminal points of $\underline{a}, \underline{b}$ and $\underline{c}$.
(c) Find the volume of the parallelepiped whose edges are represented by $(2,-3,4)$, $(1,2,-1)$ and $(3,-1,2)$.
2. Define the following terms:

- gradient of a scalar field;
- divergence of a vector field.
(a) Let $\underline{r}=x \underline{i}+y \underline{j}+z \underline{k}, r=|\underline{r}|$ and $\underline{a}$ be a constant vector. Find $\operatorname{div}\left(r^{n} \underline{r}\right)$, wh $n$ is a constant. Show that

$$
\operatorname{grad}\left(\frac{\underline{a} \cdot \underline{r}}{r^{3}}\right)=\frac{\underline{a}}{r^{3}}+3 \frac{(\underline{a} \cdot \underline{r})}{r^{5}} \underline{r}
$$

(b) Find the directional derivative of $\phi=2 x^{3}-3 y z$ at the point $(2,1,3)$ in direction parallel to the line whose direction cosines are proportional to $(2,1$,
(c) Determine the constant ' $a$ ' so that the vector

$$
\underline{F}=(x+3 y) \underline{i}+(y-2 z) \underline{j}+(x+a z) \underline{k}
$$

is solenoidal.
3. (a) If $\underline{F}=(2 x+y) \underline{i}+(3 y-x) \underline{j}$. Evaluate $\int_{C} \underline{F} \cdot d \underline{r}$ where $\mathscr{C}$ is the curve in the plane consisting of the straight line from $(0,0)$ to $(2,0)$ and then to $(3,2)$.
(b) Evaluate $\iint_{S} \underline{F} \cdot \underline{n} d S$, where $\underline{F}=z \underline{i}+x^{2} \underline{j}-3 y^{2} z \underline{k}$ and $S$ is the surface of cylinder $x^{2}+y^{2}=16$ included in the first octant between the planes $z=0$ $z=5$.
(c) State the Divergence theorem, and use it to evaluate $\iint_{S} \underline{F} \cdot \underline{n} d S$, where $\underline{F}=4 x z \underline{i}-y^{2} \underline{j}+y z \underline{k}$ and $S$ is the surface of the cube bounded by $x=0$ $x=1, y=0, y=1, z=0$ and $z=1$.
4. (a) Prove that the radial and transverse component of the acceleration of a part, in terms of the polar co-ordinates $(r, \theta)$ are

$$
\ddot{r}-r \dot{\theta}^{2} \text { and } \frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right) \text { respectively. }
$$

(b) A particle of mass $m$ rests on a smooth horizontal table attached through a fixed point on the table by a light elastic string of modules $m g$ and unstretched length ' $a$ '. Initially the string is just taut and the particle is projected along the table in a direction perpendicular to the line of the string with velocity $\sqrt{\frac{4 a g}{3}}$. Prove that if $r$ is the distance of the particle from the fixed point at time $t$ then

$$
\frac{d^{2} r}{d t^{2}}=\frac{4 g a^{3}}{3 r^{3}}-\frac{g(r-a)}{a} .
$$

Prove also that the string will extend until its length is $2 a$ and that the velocity of the particle is half of its initial velocity.
(a) State the angular momentum "principle for motion of a particle.
(b) A right circular cone with a semi vertical angle $\alpha$ is fixed with its axis vertical and vertex downwards. A particle of mass $m$ is held'at the point $A$ on the smooth inner surface of the cone at a distance ' $a$ ' from the axis of revolution. The particle is projected perpendicular to $O A$ with velocity ' $u^{\prime}$, where $O$ is the vertex of the cone. Show that the particle rises above the level of $A$ if $u^{2}>a g \cot \alpha$ and greatest reaction between the particle and the surface is

$$
m g\left(\sin \alpha+\frac{u^{2}}{a g} \cos \alpha\right)
$$

A rocket is fired upwards. Matter is ejected with constant relative velocity $g T$, at a ejection. Neglecting air resistance and variation in gravitational attraction, show that the greatest speed of the rocket is attained when the mass of the rocket is reduced to $M$ and this speed is

$$
g T\left(\ln 2-\frac{1}{2}\right)
$$

Show also that the rocket will reach the greatest height given by

$$
\frac{1}{2} g T^{2}(1-\ln 2)^{2}
$$

