EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
FIRST EXAMINATION IN SCIENCE - 2016/2017
FIRST SEMESTER (Aug./Sept., 2018)
AM 103 - VECTOR ALGEBRA \& CLASSICAL MECHANICS I (REPEAT)

1. (a) For any three vectors $\underline{a}, \underline{b}, \underline{c}$, prove that

$$
(\underline{a} \wedge \underline{b}) \cdot[(\underline{b} \wedge \underline{c}) \wedge(\underline{c} \wedge \underline{a})]=[\underline{a} \cdot(\underline{b} \wedge \underline{c})]^{2} .
$$

[40 marks]
(b) Let the vector \underline{x} be given by the equation $\lambda \underline{x}+\underline{x} \wedge \underline{a}=\underline{b}$, where $\underline{a}, \underline{b}$ are constant vectors and λ is a non-zero scalar. Show that \underline{x} satisfies the equation

$$
\lambda^{2}(\underline{x} \wedge \underline{a})+(\underline{a} \cdot \underline{b}) \underline{a}-\lambda|\underline{a}|^{2} \underline{x}+\lambda(\underline{a} \wedge \underline{b})=0 .
$$

Hence find \underline{x} in terms of $\underline{a}, \underline{b}$ and λ.
(c) Find the vector \underline{x} and the scalar λ which satisfy the equations

$$
\underline{a} \wedge \underline{x}=\underline{b}+\lambda \underline{a}, \quad \underline{a} \cdot \underline{x}=2,
$$

where $\underline{Q}=\underline{i}+2 \underline{j}-\underline{k}$ and $\underline{b}=2 \underline{i}-\underline{j}+\underline{k}$.
[35 marks]
2. (a) Define the following terms:

- the gradient of a scalar field;
- the curl of a vector field.
(b) Prove that if ϕ is a scalar field and \underline{A} is a vector field then

$$
\operatorname{curl}(\phi \underline{A})=\phi \operatorname{curl} \underline{A}+\operatorname{grad} \phi \wedge \underline{A} .
$$

(c) Let \underline{a} be a non zero constant vector and let \underline{r} be a position vector of a p that $\underline{a} \cdot \underline{r} \neq 0$, and let n be a constant. If $\phi=(\underline{a} \cdot \underline{r})^{n}$, then show that ∇ and only if $n=0$ or $n=1$.

If $r=|\underline{r}|$, find $\operatorname{grad}\left(\frac{\underline{a} \cdot \underline{r}}{r^{5}}\right)$. Hence show that

$$
\operatorname{curl}\left(\frac{a \cdot \underline{r}}{r^{5}} \underline{r}\right)=\frac{a \wedge r}{r^{5}}
$$

3. (a) Define the following terms:

- a conservative vector field;
- sglenoidal vector field.

Show that $\underline{A}=(2 x-y) \underline{i}+\left(2 y z^{2}-x\right) \underline{j}+\left(2 y^{2} z-z\right) \underline{k}$ is conservative but nots
(b) Let $O=(0,0,0), A=(1,0,0), B=(1,2,0)$ and $C=(1,2,3)$. By consio straight line path $O A, A B, B C$, find the line integral $\int_{\gamma} \underline{A} \cdot d \underline{r}$, where $\underline{A}=(2 y+3) \underline{i}+x z \underline{j}+(y z-x) \underline{k}$ and γ is a path from O to C.
(c) State the Divergence theorem, and use it to evaluate $\iint_{S} \underline{A} \cdot \underline{n} d S$, where $\underline{A}=4 x z \underline{i}-y^{2} \underline{j}+y z \underline{k}$ and S is the surface of the cube bounded $x=1, y=0, y=1, z=0$ and $z=1$.
4. (a) Prove that the radial and transverse component of the acceleration of a particle in terms of the polar co-ordinates (r, θ) are

$$
\ddot{r}-r \dot{\theta}^{2} \text { and } \frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right)
$$

respectively.
(b) A particle of mass m rests on a smooth horizontal table attached through a fixed point on the table by a light elastic string of modules $m g$ and un-stretched length ' a '. Initially the string is just taut and the particle is projected along the table in a direction perpendicular to the line of the string with velocity $\sqrt{\frac{4 a g}{3}}$. Prove that if r is the distance of the particle from the fixed point at time t then

$$
\frac{d^{2} r}{d t^{2}}=\frac{4 g a^{3}}{3 r^{3}}-\frac{g(r-a)}{a}
$$

Prove also that the string will extend until its length is $2 a$ and that the velocity of the particle is half of its initial velocity.
\%
5. (a) A particle moves in a plane with the velocity v and the tang to the path of the particle makes an angle ψ with a fixed line in the plane. Prove that the components of acceleration of the particle along the tangent and perpendicular to it are $\frac{d v}{d t}$ and $v \frac{d \psi}{d t}$ respectively.
(b) A body attached to a parachute is released from an aeroplane which is moving horizontally with velocity v_{0}. The parachute exerts a drag opposing motion which is k times the weight of the body, where k is a constant. Neglecting the air resistance to the motion of the body, prove that if v is the velocity of the body when its path is inclined an angle ψ to the horizontal, then

$$
v=\frac{v_{0} \sec \psi}{(\sec \psi+\tan \psi)^{k}} .
$$

Prove that if $k=1$, the body cannot have a vertical component of velocity greater than $\frac{v_{0}}{2}$.
6. (a) State the angular momentum principle.
(b) A particle of mass m moves on a smooth inner surface of a paraboloid of n $r^{2}=4 a z$ whose axis is vertical and vertex downwards, the path of the pa between the horizontal circle at $z=p$ and $z=q$. Show that the angular m of the particle above the axis is $m \sqrt{8 a g p q}$ and the velocity is $\sqrt{2 g(p+q-}$ g is the acceleration due to gravity.
Show also that the reaction between the surface and the particle when thr is at $z=p$ is given by

$$
\frac{m g(a+q)}{\sqrt{a(a+p)}}
$$

