EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
FIRST YEAR EXAMINATION IN SCIENCE - 2016/2017
FIRST SEMESTER (Aug. /Sept., 2018)
AM 151 - MATHEMATICA

Answer all questions
Time allowed: Two hours

Q1. (a) Enter the appropriate Mathematica commands for the following:
i. list down the first 20 triangular numbers;
ii. list down the multiplés of eight between the range of 1 to 100 ;
iii. combine those two sets obtained in above parts (part i. and part ii.);
iv. discover all odd numbers from the combined list (part ive
(b) i. Factorize the expression $4 x^{\frac{2}{3}}+8 x^{\frac{1^{7}}{3}}+4$. .
ii. Simplify the given expression $\frac{\left(\frac{2}{x}-3\right)}{\left(1-\frac{1}{x-1}\right)}$.
(c) i. Evaluate $\int \frac{x^{5}+x^{2}+x+2}{\left(x^{2}+1\right)^{2}} d x$.
ii. Evaluate $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$.
iii. Find the third derivative of the function $g(t)=t^{3}-\sqrt{t}+e^{-2 t}$, with respect to t.
(d) Consider the equation, $x^{2}+y x+3=0$.
i. Find the solution of this given equation.
ii. Use one of the above solutions to extract it from the list of solutions and replace the value of x as 1 to obtain the output.

Q2.(a) Find the partial derivatives of $\left(x^{3}+y^{2}\right)$ with respect to x and y.
(b) Find the absolute maximum and minimum values of the function, $f(x)=x^{4}-4 x^{3}+2 x^{2}+4 x+2$ on the interval $[0,4]$.
(c) Consider the sequence $\left\{\frac{n+2}{2^{n}+1}(-2)^{n-1}\right\}$, where $n=1$ to ∞.
i. List the first ten terms of the sequence.
ii. Find the sum of the first ten terms of the sequence.
iii. Find the sum of the first n terms of the sequence.
iv. Determine whether this series converges or diverges.
(d) Let $M=\left(\begin{array}{ccc}\frac{1}{10} & \frac{2}{10} & \frac{7}{10} \\ \frac{3}{10} & \frac{2}{10} & \frac{4}{10} \\ \frac{5}{10} & \frac{4}{10} & \frac{1}{10}\end{array}\right)$.

Compute $\lim _{n \rightarrow \infty} M^{n}$ and display the answer in a matrix format.
Q3. (a) Sketch the graph of $f(x)=x^{4}-50 x^{2}+300$ and its derivative, on one set of ax for $-10 \leq x \leq 10,-500 \leq y \leq 500$.
(b) A wire, 100 inches long, is to be used to form a square and circle. Determine h the wire should be distributed in order for the combined area of the two figures be, as large as possible and as small as possible.

(c) Plot the graph of

$$
g(x)=\left\{\begin{array}{lc}
x, & x<1 \\
\text { for } 0 \leq x \leq 2 \\
x^{3}, & x \geq 1
\end{array} \text { for } 0 \leq x \leq 2\right.
$$

(d) The equation $r=\sin n \theta$, where n is a positive integer, represents a family of p curves called roses. Investigate the behavior of this family and form a conject about how the number of loops is related to n.
(e) Graph the intersection of the paraboloid $z=x^{2}+y^{2}$ with the plane $y+z=2$ Obtain a front view and a side view.

