EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST YEAR EXAMINATION IN SCIENCE - 2015/2016 FIRST SEMESTER (Jul. /Aug., 2017)

AM 151 - MATHEMATICA

Answer all questions

Time allowed: 02 hours
1)
a) Enter the appropriate Mathematica command for the following parts.
i. List down the first 25 odd numbers;
ii. Check whether the above numbers are prime or not;
iii. Find out the numeric value of the constant π and add 200;*
iv. Display the approximate value of the last output (part iii);
b) Simplify the following expressions:
i. $\frac{4}{5(3 x-1)}+\frac{9}{10(3 x+1)}-\frac{2}{\left(-9 x^{2}+1\right)}$
ii. $(x-1)(x+1)\left(x^{2}+1\right)+1$
c) Factorize the following expressions:
i. $\quad 36+192 p+160 p^{2}-256 p^{3}+64 p^{4}-84 q-224 p q+112 p^{2} q+49 q^{2}$;
ii. $\operatorname{Sin}[x]^{\wedge} 2+\operatorname{Cos}[x]^{\wedge} 2+\operatorname{Cos}[x]-\operatorname{Sin}[x]$.
d) Display the first ten square numbers and triangle numbers in a table format.
e) Consider the following lists:

$$
\begin{aligned}
& \text { List_1 }=\{1,3,5,7,9\} \\
& \text { List_2 }^{2}=\{2,4,6,8,10\} .
\end{aligned}
$$

i. Combine the above two lists into one list such that the elements of List_1 come after all those of List 2 .
ii. Add a new list element " 100 " in the third position of list which you derived in part i.
2)
a) Find the partial derivatives of $x^{3}+y^{2}$ with respect to x and y.
b) Find the equation of the tangent line to the curve $y=4 x^{2}-4$ at the point $(-1,0)$ and sketch the graph of the given curve and tangent line in the same axes.
c) Let $\mathrm{P}=\left[\begin{array}{ccc}-8 & -5 & -3 \\ -3 & 9 & 5\end{array}\right], \mathrm{Q}=\left[\begin{array}{cc}7 & 5 \\ 4 & 6 \\ 5 & -5\end{array}\right], \mathrm{R}=\left[\begin{array}{ccc}4 & -8 & -9 \\ 9 & 4 & -6 \\ 7 & 6 & 5\end{array}\right]$ and $\mathrm{S}=\left[\begin{array}{cc}-5 & 9 \\ -6 & -5\end{array}\right]$.

Perform each computation below:
i. P Q;
ii. Q P R;
iii. $P \mathrm{Q}+\mathrm{S}$;
d) Consider the sequence $\left\{\frac{n+2}{2^{n}+1}(-2)^{n-1}\right\}$ where $\mathrm{n}=1$ to ∞.
i. List the first five terms of the sequence.
ii. Find the sum of the first five terms of the sequence.
iii. Find the sum of the first n terms of the sequence.
iv. Determine whether this series converges or diverges.
3)
a) Plot the 3D surface that is parameterized by,
$x=u \cos u(4+\cos (u+v)) ;$
$y=u \sin u(4+\cos (u+v)) ;$
$z=u \sin (\cos (u+v))$.
Consider the range $0 \leq u \leq 4 \pi$ and $0 \leq \mathrm{v} \leq 2 \pi$.
b) Find the area between the graphs of $y=\sin x$ and $y=\cos x$ on the interval $[0,2$ Pi].
c)
i. Define the function, $f(y)=\cos \left(y^{2}\right)+e^{1-y^{2}}$.
ii. Use the above function to plot the 3D graph with the given options below.

- x range $-7<x<10$
- y range
- Shading colors : Pink and Green
- Viewing point : 6,-5,6
- Image size : 400
d) Calculate the volume of the solid bounded between the surfaces $z=4 x^{2}+4 y^{2}$ and $z=16-4 x^{2}-4 y^{2}$ on the rectangular domain $[-1,1] \times[-1,1]$.

