

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST YEAR EXAMINATION IN SCIENCE - 2015/2016 FIRST SEMESTER (Jul. /Aug., 2017) AM 151 – MATHEMATICA

Answer all questions

Time allowed: 02 hours

1)

a) Enter the appropriate Mathematica command for the following parts.

i. List down the first 25 odd numbers;

ii. Check whether the above numbers are prime or not;

iii. Find out the numeric value of the constant π and add 200;

iv. Display the approximate value of the last output (part iii);

b) Simplify the following expressions:

- i. $\frac{4}{5(3\tilde{x}-1)} + \frac{9}{10(3x+1)} \frac{2}{(-9x^2+1)}$
- ii. $(x-1)(x+1)(x^2+1) + 1$
- c) Factorize the following expressions:
 - i. 36+192p+160p² 256p³ + 64p⁴ 84q 224pq + 112p²q + 49q²;
 ii. Sin[x]² + Cos[x]² + Cos[x] Sin[x].
- d) Display the first ten square numbers and triangle numbers in a table format.
- e) Consider the following lists:

List_1 = $\{1, 3, 5, 7, 9\};$ List_2 = $\{2, 4, 6, 8, 10\}.$

- i. Combine the above two lists into one list such that the elements of List_1 come after all those of List_2.
- ii. Add a new list element "100" in the third position of list which you derived in part i.

2)

- a) Find the partial derivatives of $x^3 + y^2$ with respect to x and y.
- b) Find the equation of the tangent line to the curve $y = 4x^2 4$ at the point (-1, 0) and sketch the graph of the given curve and tangent line in the same axes.

c) Let $P = \begin{bmatrix} -8 & -5 & -3 \\ -3 & 9 & 5 \end{bmatrix}$, $Q = \begin{bmatrix} 7 & 5 \\ 4 & 6 \\ 5 & -5 \end{bmatrix}$, $R = \begin{bmatrix} 4 & -8 & -9 \\ 9 & 4 & -6 \\ 7 & 6 & 5 \end{bmatrix}$ and $S = \begin{bmatrix} -5 & 9 \\ -6 & -5 \end{bmatrix}$. Perform each computation below: i. PQ;

- ii. QPR;
- iii. PQ + S;

d) Consider the sequence $\{\frac{n+2}{2^{n+1}}, (-2)^{n-1}\}$ where n = 1 to ∞ .

- i. List the first five terms of the sequence.
- ii. Find the sum of the first five terms of the sequence.
- iii. Find the sum of the first n terms of the sequence.
- iv. Determine whether this series converges or diverges.

3)

- a) Plot the 3D surface that is parameterized by,
 - $x = u \cos u (4 + \cos (u + v));$ y = u sin u (4 + cos (u + v)); z = u sin (cos (u + v)).

Consider the range $0 \le u \le 4\pi$ and $0 \le v \le 2\pi$.

b) Find the area between the graphs of y = sin x and y = cos x on the interval [0, 2 Pi].

i. Define the function, $f(y) = cos(y^2) + e^{1-y^2}$.

ii. Use the above function to plot the 3D graph with the given options below.

	x range	:	-7 < x < 10
	y range	* *	-3 < y < 8
驟	Shading colors	*	Pink and Green
1	Viewing point	•	6, -5, 6
	Image size	•	400

d) Calculate the volume of the solid bounded between the surfaces $z = 4x^2 + 4y^2$ and $z = 16 - 4x^2 - 4y^2$ on the rectangular domain [-1,1] × [-1,1].

c)