23 AUG 2013

EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
FIRST EXAMINATION IN SCIENCE - 2010/2011
SECOND SEMESTER - (June, 2013)
CC 106 - BIO STATISTICS

Answer all questions

Statistical tables and calculators will be provided

1. (a) A student has collected the following data to understand the length ($\mathrm{X}, \mathrm{in} \mathrm{cm}$) of newly introduced species of lady's finger.

Classes of length	Frequency (f)
$0<\mathrm{X} \leq 10$	10
$10<\mathrm{X} \leq 20$	20
$20<\mathrm{X} \leq 30$	30
$30<\mathrm{X} \leq 40$	25
$40<\mathrm{X} \leq 50$	15

Find the mean, median and mode of length of lady's finger of this species.
(b) Data on diameter (mm) and height (cm) of plants of certain species are given in following table.

Diameter (X)	Height (Y)	$\mathbf{X}^{\mathbf{2}}$	$\mathbf{Y}^{\mathbf{2}}$	$\mathbf{X Y}$
2	5	4	25	10
3	7	9	49	21
4	10	16	100	40
5	15	25	225	75
6	20	36	400	120

(i) Briefly comment on the relationship between the diameter and the height using coefficient of correlation.
(ii) Fit a regression model of the form, $Y=\beta_{0}+\beta_{1} X$, where β_{0} and β_{1} are arbitrary real constants, for the above data and estimate the height of a plant having the diameter of 7 mm .
02. (a) Assume that a certain brand of peas seed show 0.7 probability of germination. Find the probability that at least 9 seed out of randomly selected 10 seeds, will germinate.
(b) Life time of a certain chemical is normally distributed with mean 300 days and standard deviation of 10 days. What is the probability that the life time of a selected sample of chemical will be greater than 320 days?
(c) A researcher has collected the following information to compare the mean growth rates (μ_{A} and μ_{B}) of certain crop in two mediums A and B .

Quantity	Medium A	Medium B
Sample sizes	5	7
Sample means	30	20
Sample variances	16	9

Check the following hypothesis at 5\% significance level, assuming that growth rates in these two mediums are normally distributed and the population variances are the same.
$\mathrm{H}_{0}: \mu_{A} \geq \mu_{B} \quad$ Vs $\quad \mathrm{H}_{1}: \mu_{A}<\mu_{B}$.

