

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE, 2010/2011

FIRST SEMESTER (Nov./Dec., 2012)

AM 106 - TENSOR CALCULUS
(Proper & Repeat)

Answer all questions

Time: One hour

- 1. (a) Explain what is meant by the following terms:
 - i. Covariant tensor;
 - ii. Contravariant tensor.
 - (b) Write down the law of transformation for the following tensors:
 - i. A_{mn} ;
 - ii. B_r^{pq} ;
 - iii. C_{rt}^{pqs} .
 - (c) If $ds^2 = g_{ij}dx^idx^j$ is an invariant, show that g_{ij} is a symmetric covariant tensor of rank two.
 - (d) Express the relationship between the following associated tensors:
 - i. A^{jkl} and A_{pqr} ;
 - ii. A_i^{k} and A^{qkr} .

- (e) If X(i,j) $B^j = C_i$, where B^j is an arbitrary contravariant vector and C_i is a covariant vector, then show that X(i,j) is a tensor. What is its rank and type.
 - 2. (a) Define the following:

60 AUG 2013 ...

- i. Christoffel's symbols of the first and second kind;
- ii. Geodesic;
- iii. Covariant derivative of A_p .
- (b) With the usual notations, prove the following:

i.
$$[pq, r] = g_{rs}\Gamma^s_{pq}$$
;

ii.
$$[pm,q]+[qm,p]=\frac{\partial g_{pq}}{\partial x^m};$$

iii.
$$\frac{\partial g^{pq}}{\partial x^m} + g^{pn} \Gamma^q_{mn} + g^{qn} \Gamma^p_{mn} = 0.$$

Hence show that,

$$g_{jk;q}=0.$$

(c) Show that the non-vanishing Christoffel's symbols of the second kind in cylindrical coordinate (ρ, ϕ, z) are given by

$$\Gamma^1_{22} = -\rho, \quad \Gamma^2_{21} = \frac{1}{\rho}, \quad \Gamma^2_{12} = \frac{1}{\rho},$$

where $x^1 = \rho$, $x^2 = \phi$, $x^3 = z$.