EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS
 FIRST EXAMINATION IN SCIENCE - 2009/2010

FIRST SEMESTER (June/July, 2011)

AM106 - TENSOR ANALYSIS

(a) Write the transformation equation for the following tensors:
i. $A_{q r}^{m s}$;
ii. $B_{m n}^{p q r}$;
iii. $C_{i j k}$.
(b) Define the terms symmetric and skew-symmetric tensors.
i. If $d s^{2}=g_{i j} d x^{i} d x^{j}$ is an invariant, then show that $g_{i j}$ is a symmetric covariant tensor of rank two.
ii. If $A^{p q}$ and $B_{r s}$ are skew-symmetric tensors, then show that $C_{r s}^{p q}=A^{p q} B_{r s}$ is a symmetric tensor.
(c) The covariant components of a tensor in rectangular co-ordinate system are $y z, 3,2 x+y$. Find its covariant components in cylindrical co-ordinates (ρ, ϕ, z).
2. (a) Define the Christoffel's symbols of the first and second kind.
(b) Determine the Christoffel's symbols of the second kind for the line element given by

$$
d s^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}
$$

(c) With the usual notations, prove the following:
i. $\frac{\partial g_{p q}}{\partial x^{m}}=[p m, q]+[q m, p]$;
ii. $\frac{\partial g^{p q}}{\partial x^{m}}=-g^{p n} \Gamma_{m n}^{q}-g^{q n} \Gamma_{m n}^{p}$;
iii. $\frac{1}{2 g} \frac{\partial g}{\partial x^{m}}=\Gamma_{j m}^{j}$.

