EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
FIRST EXAMINATION IN SCIENCE - 2011/2012
FIRST SEMESTER (Jan./Feb., 2014)
AM 151 - MATHEMATICA
(Proper \& Repeat)

Answer all questions
Time : Two hours

1. (a) If x is an approximation to \sqrt{a}, it can be shown that $\frac{1}{2}\left(x+\frac{a}{x}\right)$ is a better approximation. Use NestList to observe the first 10 approximations obtained in computing $\sqrt{3}$, starting with $x=100$.
(b) The $20^{\text {th }}$ prime number is 71 . Find all the numbers less than 71 which are not prime.
(c) i. Factor $4 x^{\frac{2}{3}}+8 x^{\frac{1}{3}}+4$.
ii. Simplify the given expression $\frac{\left(\frac{2}{x}-3\right)}{1-\frac{1}{x-1}}$.
(d) i. Evaluate $\int \frac{x^{5}+x^{2}+x+2}{\left(x^{2}+1\right)^{2}} d x$.
ii. Evaluate $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$.
iii. Find the third derivative of the function $g(t)=t^{3}-\sqrt{t}+e^{-2 t}$.
(e) Let $A=\left(\begin{array}{cccc}3 & -1 & 2 & 1 \\ 2 & 7 & -3 & 4\end{array}\right)$ and $B=\left(\begin{array}{cc}2 & -1 \\ 3 & 2 \\ -4 & -3 \\ 0 & -2\end{array}\right)$. Find the A^{T}, B^{T} and verify that $(A B)^{T}=B^{T} A^{T}$.
(f) Find all solution of the equation $x^{3}=2 x+1$.
(g) Consider the parallelepiped with sides $a=j+k, b=2 i+j+3 k$ and $c=i+j+2 k$
i. Find the volume.
ii. Find the area of the face determined by b and c.
2. (a) Plot the graph of the function $f(x)=\left\{\begin{array}{ll}1-x^{2}, & \text { if } \\ \frac{1}{x}, & \text { if } \\ x \geq 1\end{array}\right.$, and indicate where the function is discontinuous .
(b) Find the equation of the tangent line to the curve $y=\frac{1-x}{1+x}$ at the point $(2,-1 / 3)$ and the sketch the graph of the tangent line.
(c) Plot the graph showing the region under the curve $y=x^{4}$ from $x=-1$ to $x=2$, and then find the area of the region.
(d) Plot the polar curve represented by $r=2$ when
i. $0 \leq \theta \leq \pi$,
ii. $-\pi / 4 \leq \theta \leq \pi / 4$,
iii. $-2 \pi \leq \theta \leq 2 \pi$,
where $r=\sqrt{x^{2}+y^{2}}$.
(e) Find all the critical numbers for the function $f(x)=x^{4 / 5}(x-4)^{2}$.
(f) Consider the sequence $\left\{(-1)^{n-1} \frac{n+2}{5^{n}}\right\}_{n=1}^{\infty}$.
i. List the first 7 terms of the sequence .
ii. Determine whether the sequence converges.
iii. Find the sum of the first 7 terms of the sequence.
iv. Find the sum of the first n terms of the sequence.
v. Find the sum of the entire sequence (from 1 to ∞).
3. (a) Find the area of the surface generated by rotating the curve $y=e^{x}, 0 \leq x \leq 1$, about the y axis.
(b) Suppose a curve C is defined by the parametric equation $x=t^{2}, y=t^{3}-3 t$.
i. Plot the curve.
ii. Find the equation(s) of the tangent line(s) to the curve at the point $(3,0)$.
iii. Plot the tangent line(s) at the point $(3,0)$.
(c) Use mathematica to find the general solution of the logistic equation

$$
\frac{d y(t)}{d t}=(r-a y(t)) y(t)
$$

i. Approximate the population using $r=0.03, a=0.0001$, and $y(0)=5.3$.
ii. Investigate the behavior of the solution when the initial population is varied.

