First Year First Semester Examination in Science
2015/2016 (July/August 2017)
CH 102 Introduction to Electrochemistry and Thermodynamics

Gas constant $(\mathbb{R})=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \quad 2.303 \mathrm{RT} / \mathrm{F}=0.0591 \mathrm{~V}$
1.
(a) State the first law of thermodynamics

Consider 2 moles of an ideal gas at an initial pressure of 1 atm and initial temperature of 273.15 K . Assume it expands adiabatically against a pressure-of 0.435 atm until its volume doubles. Calculate the work, the final temperature, and the ΔU of the process.
(b) Derive the expression for heat capacity at constant volume $\left(C_{V}\right)$ from the first principle.

The temperature of 1.00 mol of $\mathrm{O}_{2}(\mathrm{~g})$, changes from $-20.0^{\circ} \mathrm{C}$ to $37.0^{\circ} \mathrm{C}$ at constant volume. Evaluate change in internal energy, ΔU in the following cases.
i) It is an ideal gas with $C_{V}=20.78 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
ii) It is a real gas with $C_{V}=21.6+4.18 \times 10^{-3} T-\left(1.67 \times 10^{5}\right) / T^{2}$ (60 marks)
2. (a) i) Derive the integrated form of Clausius - Clapeyron equation from Clapeyron equation between two sets of conditions, $\left(p_{1}, T_{1}\right)$ and $\left(p_{2}, T_{2}\right)$.
ii) All liquids have characteristic vapour pressures that vary with temperature. The characteristic vapour pressure for pure water at $22^{\circ} \mathrm{C}$ is 19.827 mmHg and at $30^{\circ} \mathrm{C}$ is 31.824 mmHg . Use these data to calculate the change in enthalpy per mole for the vaporization process
(c) For the following cell,

$$
\mathrm{Cd}(s) / C d^{2+}(a q, x M) / / \mathrm{Ni}^{2+}(a q, 1 M) / N i(s)
$$

i) Write the half-cell and cell reactions
ii) Calculate standard electrode potential $\left(E_{\text {cell }}^{\theta}\right)$
iii) If the electrode potential of the cell $\left(E_{\text {cell }}\right)$ is 2.4 V , determine the value

$$
\left[E_{N i^{2+}, N i}^{\theta}=-0.23 \mathrm{~V}, E_{C d^{2+}, C d}^{\theta}=-0.40 \mathrm{~V}\right]
$$

(d) Calculate the standard electrode potential $\left(E_{\text {cell }}^{\theta}\right)$, standard Gibb's energy $\left(\Delta G^{\theta}\right)$ and equilibrium constant K at $25^{\circ} \mathrm{C}$ for the following elec reaction

$$
C u(s)+F e^{3+}(a q) \rightarrow C u^{2+}(a q)+F^{2+}(a q)
$$

