

Eastern University, Sri Lanka

First Year First Semester Examination in Science

2011/2012 (January 2013)

CH 102 Introduction to Electrochemistry and Thermodynamics (Proper& Repeat)

Answer all questions

1.

Time: 01 hour

Gas constant (R) = $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ 2.303 RT/F = 0.0591 V

a) i. Write the mathematical expression for first law of thermodynamics

(05 marks)

ii. A sample of 0.175 mol of an ideal gas is allowed to expand under adiabatic and reversible conditions from a volume of 5.0 dm³ at a pressure of 303975 Nm⁻² and 298 K until the volume becomes 10.0 dm³. Calculate the final pressure and final temperature of the gas and the values of $q, w, \Delta U$ and ΔH .

(45 marks)

(15 marks)

- b) i. Define 'Joule Thomson coefficient', and show that $\mu_{J-T} = -1/C_P \left(\frac{\partial H}{\partial P}\right)_T$
- ii. The μ_{J-T} for CO₂ gas at pressure up to 20 atm pressure can be taken as constant and equal to 1.054 K atm⁻¹. Calculate the change in enthalpy (ΔH) when 5 moles of CO₂ at 25 ° C and 1 atm pressure is compressed isothermally to 20 atm pressure. (The isobaric thermal heat capacity (C_p) of CO₂ is 36 J K⁻¹ mol⁻¹)

(35 marks)

Cont..

2.

a) i. Derive the Maxwell relation $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$

(10 marks)

ii. One mole of gas which obeys to the equation of state $P = \frac{RT}{V-b} - \frac{a}{TV^2}$ expands from V_1 to V_2 . Determine $\left(\frac{\partial P}{\partial T}\right)_V$ and hence show that $\Delta S = Rln \left[\frac{V_2-b}{V_1-b}\right] + \frac{a}{T^2} \left[\frac{1}{V_1} - \frac{1}{V_2}\right]$

(25 marks)

- b) Consider the galvanic cell $Cu(s)/Cu^{2+} (aq, 0.25 M)//Fe^{3+} (aq, 0.0001 M)/Fe^{2+} (aq, 0.20 M).$
 - i. Write the cell reaction
 - ii. Calculate the standard electrode potential and electrode potential of the cell.

Given that $E_{Cu^{2+}/Cu}^{\theta} = 0.34 \text{ V}$ and $E_{Fe^{3+}/Fe^{2+}}^{\theta} = 0.77 \text{ V}$

(40 marks)

c) Calculate the change in standard free energy (ΔG^{θ}) at 298 K for the reaction

 $Sn(s) + Pb^{2+}(aq) \longrightarrow Sn^{2+}(aq) + Pb(s)$

Given that $E_{Sn^{2+}/Sn}^{\theta} = -0.14 \text{ V}$ and $E_{Pb^{2+}/Pb}^{\theta} = -0.126 \text{ V}$

(25 marks)