EASTERN UNIVERSITY, SRILANKA

DEPARTMENT OF MATHEMATICS
FIRST YEAR EXAMINATION IN SCIENCE -2010/2011
SECOND SEMESTER (June, 2013)
CS106 - COMPUTER ORGANIZATION AND ARCHITECTURE
Answer all questions
Time allowed: 02 hours
01.
a) Briefly explain the following terms:
i. Arithmetic Logic Unit (ALU);
ii. Computer Architecture.
b) Compare and contrast about the second and third generations of computers.
c) What are the four main functions of a computer and draw the functional view diagram of a computer.
d) Convert the decimal number 82.67 to its binary, octal and hexadecimal equivalent.
e) Perform the following operations using the 2 's complements:
i. 20-15;
ii. $(-48)-(23)$;

- 2
iii. $(10011)_{2}-(10010)_{2}$;
iv. $(100010)_{2}-(100110)_{2}$.

2.

a) Verify that the following operations are commutative but not associative.
i. NAND
ii. NOR
b) With relevant logic diagram and truth table explain the working of a two input X-OR gate.
c) State and prove the De Morgan's laws.
d) What is meant by universal gate? Explain briefly, how any one of the universal gates could functions as basic gates.
e) Construct a logic circuit using any one of the universal gates for the following expression: $\mathbf{X}=\mathbf{A} .(\mathbf{B} . \mathbf{C})$.
f) The voltage waveforms shown in figure below are applied at the inputs of 2 -input AND and OR gates. Determine the output waveforms.

g) Find the Boolean expression for the logic circuit shown below:

03.
a) Briefly describe the following with an aid of suitable exampl
i. Sum of Product (SOP);

ii. Product of Sum (POS).
b) Distinguish between minterms and maxterms.
c) A staircase light is controlled by the two switches. One at the top of the stairs and another at the bottom of stairs.
i. Make the truth table for this system.
ii. Write the logic equation in SOP form.
iii. Realize the circuit using AND and OR gates.
d) Write the expression for Boolean function $F(A, B, C)=\sum m(1,4,5,6,7)$ in standard POS form.
e) Minimize the following logic function using Karnaugh map and realize using NAND and NOR gates: $F(A, B, C, D)=\sum m(1,2,3,5,8,9,11,13,15)$.
04.
a) With the help of a truth table explain the working of a hatf subtractor. Draw the logic diagram using gates.
b) Draw the logic diagram of a full subtractor using half subtractors and explain its working with the help of a truth table.
c) What is a multiplexer (MUX)? Illustrate its functional diagram. Write the scheme of a 4-input multiplexer using basic gates (AND/OR/NOT) and explain its operation.
d) Design a 8 to 1 Multiplexer by using the three variable function given by

$$
F(A, B, C)=\sum m(1,3,5,6)
$$

e) What is meant by a "Flip Flop"? Explain the R-S Flip Flop circuit using NOR gates.
f) Distinguish between ROM, PROM, EPROM and EEPROM.

