EASTERN UNIVERSITY SRI LANKA FACULTY OF COMMERCE AND MANAGEMENT FIRST YEAR, SECOND SEMESTER EXAMINATION IN BUSINESS ADMINISTRATION/ COMMERCE 2008/2009 (SEPT 2010) – PROPER AND REPEAT COM 1032 BASIC CALCULUS

Answer All Questions

)

)

01.

Time: 03 Hours

30 NOV 2010

- (i) (a) If f(x) = x + |x-2| compute f(-1) and f(3).
 - (b) Specify the domain of the function $g(t) = \sqrt{3t-2}$
 - (c) Find the composite function f[g(1)] if $f(u) = \sqrt{u+1}$ and $g(x) = x^2 1$.
 - (d) A certain industrial machine depreciates so that its value after t years is given by a function $Q(t) = ke^{-0.04t}$. After 20 years the machine is worth 8986.58. Find the following:
 - (a) the value of k;
 - (b) original value of the machine.

(ii) A private college in the south west has launched a fund – raising campaign. Suppose that the college officials estimate that it will take $f(x) = \frac{10x}{150-x}$ weeks to reach x

percent of their goal.

- (a) What is the domain of the function?
- (b) For what values of x does f(x) have a practical interpretation in this context?
- (c) Sketch the relevant portion of the graph of this function.
- (d) How long will it take to reach 50 percent of the campaign's goal?

(20 Marks)

02.

(a)

(i) Evaluate the limits of the functions given below:

 $\lim_{x \to -2} \frac{x^2 + 8}{x + 2} \quad ; \qquad \text{(b)} \quad \lim_{x \to 1} \frac{1 - x}{\sqrt{5 - x^2 - 2}}.$

(ii)

Find $\frac{dy}{dx}$ for the functions given below.

(IV) $\frac{d^2y}{dx^2}$ at x = 2.

a)
$$y = \ln \left[\frac{\sqrt{4x+3} \left(x^2 - 2x + 9 \right)}{(3x-2)^{3/2}} \right];$$
 b) $y = \frac{e^{2x^2} + e^{3x+2}}{e^{3x}}$

(iii) (a) If
$$x^2 + xy = 5$$
, find $\frac{d^2y}{dx^2}$ in terms of x and y.

(b) Suppose that
$$y = \frac{1}{t}$$
 and $t = 3 - \frac{1}{x^2}$. Find the following:
(I) $\frac{dy}{dt}$; (II) $\frac{dt}{dt}$; (III) $\frac{dy}{dt}$ in terms of x and y ;

(iv)

Suppose that the demand function is given by $q = 3p^2e^{5p^2+2p+6}$, where q is number of units and p is the price per unit. Find the elasticity of demand in terms of

(20 Mar

03. (i) Find relative maxima and minima and points of inflexion for the function

$$y = x^4(x-1) - \frac{1}{3}x^3$$

(ii) Suppose that the demand function is $x = \frac{1}{3}$ (25-2p), where x is the numbers of and p is the price per unit. Let the average cost per unit be Rs 40. Find:

- (a) the revenue function in terms of p;
- (b) the cost function in terms of p;
- (c) the profit function;
- (d) the price per unit that maximizes the profit function;
- (e) the maximum profit.

04. (i)

(a) Find all the first and second order partial derivation for the function

$$f(x,y) = (x^3 + y^2)^2.$$

(b) Use the method of Lagrange multipliers to find the maximum values of f g below subject to the given constraint:

$$f(x,y) = 4x^2 - 2xy + 6y^2; x + y = 72$$

(20 Mar

- (a) The number of units of a product that are manufactured by a company is given by $f(k,L) = 10k^{0.4}L^{0.6}$, where k is the units of capital and L is the units of 2010 Labour.
 - (I) Find the marginal productivity of labour and capital,
 - (II) Determine the effect on output of an additional unit of capital and labour at k = 8, L = 20.
- (b) The profit function for a firm producing two goods x and y is given by $\pi(x, y) = 160x 3x^2 2xy 2y^2 120y 18$. Find the profit maximizing level of output for each product and the maximum profit.

(20 Marks)

Sri Laska.

(i) Integrate the following

(ii)

05.

(a)
$$\int \left(\frac{1}{x^3} - \frac{x}{2}\right)^2 dx$$
; (b) $\int 2xe^x dx$.

- (ii) Evaluate the following definite integrates
 - (a) $\int_0^3 \frac{6x}{x^2+1} dx$; (b) $\int_{-2}^3 e^{-x/2}$.
- (iii) Marginal cost is given by $MC = 32 + 18q 12q^2$. Fixed cost is 43. Find the total cost function.
- (iv) The demand and supply function under perfect competition are $P_d = 16 x^2$ and $P_s = 2x^2 + 4$ respectively. Find the consumer's surplus and producer's surplus.

(20 Marks)