

EASTERN UNIVERSITY, SRI LANKA FIRST EXAMINATION IN SCIENCE - 2005/2006 FIRST SEMESTER (Aug./ Sep., 2007) IT 103 - VECTOR ALGEBRA AND CLASSICAL MECHANICS I

nswer all questions

Time : Three hours

1. (a) For any three vectors \underline{a} , \underline{b} , \underline{c} , prove that the identity

$$\underline{a} \wedge (\underline{b} \wedge \underline{c}) = (\underline{a} \cdot \underline{c})\underline{b} - (\underline{a} \cdot \underline{b})\underline{c}.$$

Let $\underline{l}, \underline{m}$, and \underline{n} be three non zero and non co-planner vectors such that any two of them are not parallel. By considering the vector product $(\underline{r} \wedge \underline{l}) \wedge (\underline{m} \wedge \underline{n})$, prove that any vector \underline{r} can be expressed in the form $\underline{r} = (\underline{r} \cdot \underline{\alpha})\underline{l} + (\underline{r} \cdot \underline{\beta})\underline{m} + (\underline{r} \cdot \underline{\gamma})\underline{n}$.

Find the vectors $\underline{\alpha}$, $\underline{\beta}$ and $\underline{\gamma}$ in terms of \underline{l} , \underline{m} and \underline{n} .

(b) If a vector \underline{r} is resolved into components parallel and perpendicular to a given vector \underline{a} , show that the decomposition is

$$\underline{r} = \frac{(\underline{a} \cdot \underline{r})\underline{a}}{a^2} + \frac{\underline{a} \wedge (\underline{r} \wedge \underline{a})}{a^2}.$$

1

- 2. (a) Define the following terms;
 - i. the **gradient** of a scalar field ϕ ,
 - ii. the **divergence** of a vector field \underline{F} ,
 - iii. the **curl** of a vector field \underline{F} .

(b) Prove that

- i. div $(\phi \underline{F}) = \operatorname{grad} \phi \cdot \underline{F} + \phi \operatorname{div} \underline{F},$
- ii. curl $(\phi \underline{F}) = \phi$ curl $\underline{F} + \text{grad } \phi \wedge \underline{F}$.
- (c) Let $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ and $r = |\underline{r}|$ and let \underline{a} be a constant vector. Evaluate the following:
 - i. $grad(\underline{a} \cdot \underline{r});$
 - ii. $\operatorname{curl}(\underline{a} \wedge \underline{r})$.

Hence show that

i.
$$\operatorname{grad}\left(\frac{\underline{a} \cdot \underline{r}}{r^{3}}\right) = \frac{\underline{a}}{r^{3}} - \frac{3(\underline{a} \cdot \underline{r})}{r^{5}} \underline{r},$$

ii. $\operatorname{curl}\left(\frac{a \wedge r}{r^{3}}\right) = \frac{2\underline{a}}{r^{3}} + \frac{3 \ a \wedge r}{r^{5}} \wedge \underline{r}.$

3. (a) State the Stoke's Theorem.

Verify the Stoke's theorem for a vector $A = (2x - y)\underline{i} - yz^2\underline{j} - y^2z\underline{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C its boundary.

(b) State the Green's Theorem.

Verify the Green's theorem in plane for

$$\int_C [(x^2 - xy^3) \, dx + (y^2 - 2xy) dy]$$

where C is in the square with vertices (0,0), (2,0), (2,2), (0,2).

Prove that the radial and transverse component of the acceleration of a particle in a plane in terms of polar co-ordinates (r, θ) are

$$\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2$$
 and $\frac{1}{r}\frac{d}{dt}\left(r^2 \frac{d\theta}{dt}\right)$

respectively.

A particle of mass m rests on a smooth horizontal table attached through a fixed point on the table by a light elastic string of modules mg and unstretched length 'a'. Initially a string is just taut and the particle is projected along the table in a direction perpendicular to the line of the string with velocity $\sqrt{\frac{4ag}{3}}$. Prove that if r is the distance of the particle from the fixed point at time t then

$$\frac{d^2r}{dt^2} = \frac{4ga^3}{3r^3} - \frac{g(r-a)}{a}$$

Prove that the string will extend until it's length is 2a and that the velocity of the particle is then half of it's initial velocity.

A particle moves in a plane with velocity v and the tangent to the path of the particle makes an angle ψ with a fixed line in the plane. Prove that the components of the acceleration of the particle along the tangent and perpendicular to it are $\frac{dv}{dt}$ and $v\frac{d\psi}{dt}$ respectively.

A smooth wire in the form of an arc of a cycloid which equation is $s = 4a \sin \psi$, is fixed in a vertical plane with the vertex downwards and the tangent at vertex horizontal. A small bead of mass m is threaded on the wire and is projected from the vertex with speed $\sqrt{8ag}$. If the resistance of the medium in which the motion take place is $mv^2/8a$ when the speed is v. Show that the bead comes to instantaneous rest at a cusp ($\psi = \pi/2$) and returns to the starting point with speed $\sqrt{8ga(1-2e^{-1})}$. Establish the equation

$$F'(t) = m(t)\frac{dv}{dt} + v_0\frac{dm(t)}{dt}$$

for the motion of a rocket of varying mass m(t) moving in a straight line with velocity \underline{v} under a force $\underline{F}(t)$, matter being emitted at a constant rate with a velocity \underline{v}_0 relative to the rocket.

- (a) A rocket of total mass m contains fuel of mass ϵm ($0 < \epsilon < 1$). This fuel burns at a constant rate k and the gas is ejected backward with the velocity u_0 relative to the rocket. Find the speed of the rocket when the fuel has been completely burnt.
- (b) A rain drop falls from rest under gravity through a stationary cloud. The mass of the rain drop increases by absorbing small droplets from the cloud. The rate of increment is mrv, where m is the mass, v is the speed and r is a constant. Show that after the rain drop fallen a distance x, $rv^2 = g(1 - e^{-2rx}).$

oth wire in the form of an arc of a cycloid which equation is a

ixed in a vertical plane with the vertex downwards and the tangent at vertex

rizontal. A small bead of inas in is threaded on the wire and is projected

in the vertex with energy Sag. If the resistance of the modium in which

e motion take place is me²/8a when the speed is w. Show that the bead

but with speed $\sqrt{8ga(1-2e^{-1})}$