EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE - 2005/2006
FIRST SEMESTER (Aug./ Sep., 2007)
IT 103 - VECTOR ALGERRA AND CLASSICAL MECHANICS I

1. (a) For any three vectors $\underline{a}, \underline{b}, \underline{c}$, prove that the identity

$$
\underline{a} \wedge(\underline{b} \wedge \underline{c})=(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{a} \cdot \underline{b}) \underline{c} .
$$

Let $\underline{l}, \underline{m}$, and \underline{n} be three non zero and non co-planner vectors such that any two of them are not parallel. By considering the vector product $(\underline{r} \wedge \underline{l}) \wedge(\underline{m} \wedge \underline{n})$, prove that any vector \underline{r} can be expressed in the form $\underline{r}=(\underline{r} \cdot \underline{\alpha}) \underline{l}+(\underline{r} \cdot \underline{\beta}) \underline{m}+(\underline{r} \cdot \underline{\gamma}) \underline{\underline{n}}$.
Find the vectors $\underline{\alpha}, \underline{\beta}$ and $\underline{\gamma}$ in terms of $\underline{l}, \underline{m}$ and \underline{n}.
(b) If a vector \underline{r} is resolved into components parallel and perpendicular to a given vector \underline{a}, show that the decomposition is

$$
\underline{r}=\frac{(\underline{a} \cdot \underline{r}) \underline{a}}{a^{2}}+\frac{\underline{a} \wedge(\underline{r} \wedge \underline{a})}{a^{2}}
$$

2. (a) Define the following terms;
i. the gradient of a scalar field ϕ,
ii. the divergence of a vector field E,
iii. the curl of a vector field \underline{F}.
(b) Prove that
i. $\operatorname{div}(\phi \underline{F})=\operatorname{grad} \phi \cdot \underline{F}+\phi \operatorname{div} \underline{F}$,
ii. $\operatorname{curl}(\phi \underline{F})=\phi \operatorname{curl} \underline{F}+\operatorname{grad} \phi \wedge \underline{F}$.
(c) Let $\underline{r}=x \underline{\underline{i}}+y \underline{j}+z \underline{\underline{k}}$ and $r=|\underline{r}|$ and let \underline{a} be a constant vector. Evaluate the following:
i. $\operatorname{grad}(\underline{a} \cdot \underline{r})$;
ii. $\operatorname{curl}(\underline{a} \wedge \underline{r})$.

Hence show that
i. $\operatorname{grad}\left(\frac{\underline{a} \cdot \underline{r}}{r^{3}}\right)=\frac{\underline{a}}{r^{3}}-\frac{3(\underline{a} \cdot \underline{r})}{r^{5}} \underline{r}$,
ii. curl $\left(\frac{a \wedge r}{r^{3}}\right)=\frac{2 a}{r^{3}}+\frac{3 a \wedge r}{r^{5}} \wedge \underline{r}$.
3. (a) State the Stoke's Theorem.

Verify the Stoke's theorem for a vector $A=(2 x-y) \underline{i}-y z^{2} \underline{j}-y^{2} z \underline{k}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C its boundary.
(b) State the Green's Theorem.

Verify the Green's theorem in plane for

$$
\int_{C}\left[\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y\right]
$$

where C is in the square with vertices $(0,0),(2,0),(2,2),(0,2)$.

Prove that the radial and transverse component of the acceleration of a particle in a plane in terms of polar co-ordinates (r, θ) are

$$
\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2} \quad \text { and } \frac{1}{r} \frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)
$$

respectively.

A particle of mass m rests on a smooth horizontal table attached through a fixed point on the table by a light elastic string of modules $m g$ and unstretched length ' a '. Initially a string is just taut and the particle is projected along the table in a direction perpendicular to the line of the string with velocity $\sqrt{\frac{4 a g}{3}}$. Prove that if r is the distance of the particle from the fixed point at time i then

$$
\frac{d^{2} r}{d t^{2}}=\frac{4 g a^{3}}{3 r^{3}}-\frac{g(r-a)}{a}
$$

Prove that the string will extend until it's length is $2 a$ and that the velocity of the particle is then half of it's initial velocity.

A particle moves in a plane with velocity v and the tangent to the path of the particle makes an angle ψ with a fixed line in the plane. Prove that the components of the acceleration of the particle along the tangent and perpendicular to it are $\frac{d v}{d t}$ and $v \frac{d \psi}{d t}$ respectively.

A smooth wire in the form of an arc of a cycloid which equation is $s=4 a \sin \psi$, is fixed in a vertical plane with the vertex downwards and the tangent at vertex horizontal. A small bead of mass m is threaded on the wire and is projected from the vertex with speed $\sqrt{8 a g}$. If the resistance of the medium in which the motion take place is $m v^{2} / 8 a$ when the speed is v. Show that the bead comes to instantaneous rest at a cusp ($\psi=\pi / 2$) and returns to the starting point with speed $\sqrt{8 g a\left(1-2 e^{-1}\right)}$.

Establish the equation

$$
H^{\prime}(t)=m(t) \frac{d v}{d t}+v_{0} \frac{d m(t)}{d t}
$$

for the motion of a rocket of varying mass $m(t)$ moving in a straight line with velocity \underline{v} under a force $\underline{F}(t)$, matter being erritted at a constant rate with a velocity \underline{v}_{0} relative to the rocket.
(a) A rocket of total mass m contains fuel of mass $\epsilon m(0<\epsilon<1)$. This fuel burns at a constant rate k and the gas is ejected backward with the velocity u_{0} relative to the rocket. Find the speed of the rocket when the fuel has been completely burnt.
(b) A rain drop falls from rest under gravity through a stationary cloud. The mass of the rain drop increases by absorbing small droplets from the cloud. The rate of increment is $m r v$, where m is the mass, v is the speed and r is a constant. Show that after the rain drop fallen a distance x, $r v^{2}=g\left(1-e^{-2 r x}\right)$.

