EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2011/2012
FIRST SEMESTER (Jan./Feb., 2014)
MT 103 - VECTOR ALGEBRA \& CLASSICAL MECHANICS I (REPEAT)

1. (a) For any three vectors $\underline{a}, \underline{b}, \underline{c}$, prove that

$$
\underline{a} \wedge(\underline{b} \wedge \underline{c})=(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{a} \cdot \underline{b}) \underline{c} .
$$

Hence show that

$$
(\underline{a} \wedge \underline{b}) \cdot[(\underline{b} \wedge \underline{c}) \wedge(\underline{c} \wedge \underline{a})]=[\underline{a} \cdot(\underline{b} \wedge \underline{c})]^{2} .
$$

(b) Let the vector \underline{x} be given by the equation $\lambda \underline{x}+\underline{x} \wedge \underline{a}=\underline{b}$, where $\underline{a}, \underline{b}$ are constant vectors and λ is a non-zero scalar. Show that \underline{x} satisfies the equation

$$
\lambda^{2}(\underline{x} \wedge \underline{a})+(\underline{a} \cdot \underline{b}) \underline{a}-\lambda|\underline{a}|^{2} \underline{x}+\lambda(\underline{a} \wedge \underline{b})=0 .
$$

Hence find \underline{x} in terms of $\underline{a}, \underline{b}$ and λ.
(c) Find the vector \underline{x} and the scalar λ which satisfy the equations

$$
\underline{a} \wedge \underline{x}=\underline{b}+\lambda \underline{a}, \quad \underline{a} \cdot \underline{x}=2,
$$

where $\underline{a}=\underline{i}+2 \underline{j}-\underline{k}$ and $\underline{b}=2 \underline{i}-\underline{j}+\underline{k}$.
2. (a) Define the following terms:
i. the gradient of a scalar field ϕ;
ii. the curl of a vector field \underline{A}.
(b) Prove that if ϕ is a scalar field and \underline{A} is a vector field then

$$
\operatorname{curl}(\phi \underline{A})=\phi \operatorname{curl} \underline{A}+\operatorname{grad} \phi \wedge \underline{A} .
$$

(c) Let \underline{a} be a non zero constant vector and let \underline{r} be a position vector of a point such that $\underline{a} \cdot \underline{r} \neq 0$, and let n be a constant. If $\phi=(\underline{a} \cdot \underline{r})^{n}$, then show that $\nabla^{2} \phi=0$ if and only if $n=0$ or $n=1$.

If $r=|\underline{r}|$, find $\operatorname{grad}\left(\frac{\underline{a} \cdot \underline{r}}{r^{5}}\right)$. Hence show that

$$
\operatorname{curl}\left(\frac{\underline{a} \cdot \underline{r}}{r^{5}} \underline{r}\right)=\frac{\underline{a} \wedge \underline{r}}{r^{5}}
$$

(d) i. Find the unit normal vector to the surface $x^{2} y+2 x z=4$ at the point $(2,-2,3)$.
ii. Show that $\underline{A}=\left(2 x y+z^{3}\right) \underline{i}+x^{2} \underline{j}+3 x z^{2} \underline{k}$ is a conservative force field.
3. State the Stokes' theorem.
(a) Verify the Stokes' theorem for a vector $\underline{A}=(2 x-y) \underline{i}-y z^{2} \underline{j}-y^{2} z \underline{k}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
(b) Evaluate $\iiint_{V} \phi d V$, where $\phi=45 x^{2} y$ and V is the closed region bounded by the planes $4 x+2 y+z=8, x=0, y=0, z=0$.
4. A particle A on a smooth table is attached by a string passing through a small hole in the table and carries a particle B of equal mass hanging vertically. The particle A is projected along the table at right angle to the string with velocity $\sqrt{2 g h}$ when at a distance ' a ' from the hole. Here g is the gravitational acceleration and h is a constant. If r is the distance of the particle A from the hole at time t, show the following:
(a) $\left(\frac{d r}{d t}\right)^{2}=g h\left(1-\frac{a^{2}}{r^{2}}\right)+g(a-r)$;
(b) the particle B will be pulled up to the hole if the total length of the string is less than $\frac{h}{2}+\sqrt{a h+\frac{h^{2}}{4}}$;
(c) the tension of the string is $\frac{1}{2} m g\left(1+\frac{2 a^{2} h}{r^{3}}\right)$, where m is the mass of each particle.
5. State the angular momentum principle for motion of a particle.

A right circular cone with a semi vertical angle α is fixed with its axis vertical and vertex downwards. A particle of mass m is held at the point A on the smooth inner surface of the cone at a distance ' a ' from the axis of revolution. The particle is projected perpendicular to $O A$ with velocity ' u ', where O is the vertex of the cone. Show that the particle rises above the level of A if $u^{2}>a g \cot \alpha$ and greatest reaction between the particle and the surface is

$$
m g\left(\sin \alpha+\frac{u^{2}}{a g} \cos \alpha\right)
$$

6. A rocket with initial mass M is fired upwards. Matter is ejected with relative velocity - u at a constant rate $e M$. Let m be the mass of the rocket without fuel. Show that the rocket cannot rise at once unless $e u>g$ and it cannot rise at all unless $e M u>m g$. If it just rises vertically at once, show that its greatest velocity is given by

$$
u \ln \left(\frac{M}{m}\right)-\frac{g}{e}\left(1-\frac{m}{M}\right)
$$

and the greatest height reached is,

$$
\frac{u^{2}}{2 g}\left[\ln \left(\frac{M}{m}\right)\right]^{2}+\frac{u}{e}\left[1-\frac{m}{M}-\ln \left(\frac{M}{m}\right)\right]
$$

