

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE, 2010/2011 FIRST SEMESTER (Nov./Dec., 2012) MT 106 - TENSOR CALCULUS (Repeat)

Answer all questions

Time : One hour

23 AUG 2013

1. (a) Explain what is meant by the following terms:

- i. Covariant tensor;
- ii. Contravariant tensor.
- (b) Write down the law of transformation for the following tensors:
 - i. A_{mn} ;
 - ii. B_r^{pq} ;
 - iii. C_{rt}^{pqs} .
- (c) If $ds^2 = g_{ij}dx^i dx^j$ is an invariant, show that g_{ij} is a symmetric covariant tensor of rank two.
- (d) Express the relationship between the following associated tensors:
 - i. A^{jkl} and A_{pqr} ;
 - ii. $A_i \stackrel{k}{\cdot}_l$ and A^{qkr} .

- (e) If $X(i, j) B^j = C_i$, where B^j is an arbitrary contravariant vector and C_i is a covariant vector, then show that X(i, j) is a tensor. What is its rank and type.
- 2. (a) Define the following:

23 AUG 2013

- i. Christoffel's symbols of the first and second kind;
- ii. Geodesic;
- iii. Covariant derivative of A_p .
- (b) With the usual notations, prove the following:

i.
$$[pq, r] = g_{rs}\Gamma_{pq}^{s};$$

ii. $[pm, q] + [qm, p] = \frac{\partial g_{pq}}{\partial x^{m}};$
iii. $\frac{\partial g^{pq}}{\partial x^{m}} + g^{pn}\Gamma_{mn}^{q} + g^{qn}\Gamma_{mn}^{p} = 0.$

Hence show that,

$$g_{ik;q} = 0.$$

(c) Show that the non-vanishing Christoffel's symbols of the second kind in cylindrical coordinate (ρ, ϕ, z) are given by

$$\Gamma_{22}^1 = -\rho, \quad \Gamma_{21}^2 = \frac{1}{\rho}, \quad \Gamma_{12}^2 = \frac{1}{\rho},$$

where $x^1 = \rho, \ x^2 = \phi, \ x^3 = z.$