23 AUG 2013

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE, 2010/2011
FIRST SEMESTER (Nov./Dec., 2012)
MT 106 - TENSOR CALCULUS
(Repeat)

Answer all questions

1. (a) Explain what is meant by the following terms:
i. Covariant tensor;
ii. Contravariant tensor.
(b) Write down the law of transformation for the following tensors:
i. $A_{m n}$;
ii. $B_{r}^{p q}$;
iii. $C_{r t}^{p q s}$.
(c) If $d s^{2}=g_{i j} d x^{i} d x^{j}$ is an invariant, show that $g_{i j}$ is a symmetric covariant tensor of rank two.
(d) Express the relationship between the following associated tensors:
i. $A^{j k l}$ and $A_{p q r}$;
ii. $A_{j}{ }^{k}{ }_{l}$ and $A^{q k r}$.
(e) If $X(i, j) B^{j}=C_{i}$, where B^{j} is an arbitrary contravariant vector and C_{i} is a covariant vector, then show that $X(i, j)$ is a tensor. What is its rank and type.
2. (a) Define the following:
i. Christoffel's symbols of the first and second kind;
ii. Geodesic;
iii. Covariant derivative of A_{p}.
(b) With the usual notations, prove the following:
i. $[p q, r]=g_{r s} \Gamma_{p q}^{s}$;
ii. $[p m, q]+[q m, p]=\frac{\partial g_{p q}}{\partial x^{m}}$;
iii. $\frac{\partial g^{p q}}{\partial x^{m}}+g^{p n} \Gamma_{m n}^{q}+g^{q n} \Gamma_{m n}^{p}=0$.

Hence show that,

$$
g_{j k ; q}=0
$$

(c) Show that the non-vanishing Christoffel's symbols of the second kind in cylindrical coordinate (ρ, ϕ, z) are given by

$$
\Gamma_{22}^{1}=-\rho, \quad \Gamma_{21}^{2}=\frac{1}{\rho}, \quad \Gamma_{12}^{2}=\frac{1}{\rho},
$$

where $x^{1}=\rho, x^{2}=\phi, x^{3}=z$.

