

EASTERN UNIVERSITY, SRI LANKA <u>DEPARTMENT OF MATHEMATICS</u> FIRST EXAMINATION IN SCIENCE - 2009/2010 <u>FIRST SEMESTER (June/July, 2011)</u> <u>MT106 - TENSOR ANALYSIS</u> <u>(REPEAT)</u>

wer all questions

Time: One hour

(a) Write the transformation equation for the following tensors:

i. A_{qr}^{ms} ;

ii. B_{mn}^{pqr} ;

iii. C_{ijk} .

- (b) Define the terms symmetric and skew-symmetric tensors.
 - i. If $ds^2 = g_{ij} dx^i dx^j$ is an invariant, then show that g_{ij} is a symmetric covariant tensor of rank two.
 - ii. If A^{pq} and B_{rs} are skew-symmetric tensors, then show that $C_{rs}^{pq} = A^{pq}B_{rs}$ is a symmetric tensor.
- (c) The covariant components of a tensor in rectangular co-ordinate system are yz, 3, 2x + y. Find its covariant components in cylindrical co-ordinates (ρ, ϕ, z) .

- 2. (a) Define the Christoffel's symbols of the first and second kind.
 - (b) Determine the Christoffel's symbols of the second kind for the line element given by

$$ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta \, d\phi^2.$$

(c) With the usual notations, prove the following:

i.
$$\frac{\partial g_{pq}}{\partial x^m} = [pm, q] + [qm, p];$$

ii.
$$\frac{\partial g^{pq}}{\partial x^m} = -g^{p\,n}\Gamma^q_{mn} - g^{q\,n}\Gamma^p_{mn};$$

iii.
$$\frac{1}{2g} \frac{\partial g}{\partial x^m} = \Gamma_{jm}^{j^*}$$
.

7