EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

SECOND EXAMINATION IN SCIENCE - (2009/2010)
FIRST SEMESTER (June/July, 2011)
MT 203-EIGENSPACES AND QUADRATIC FORMS

1. (a) Define the following terms as applied to a square matrix $A=\left(a_{i j}\right)$:
i. eigenvalue;
ii. characteristic polynomial, $\psi_{A}(\lambda)$, of A;
iii. trace of $A(\operatorname{tr}(A))$.
(b) Let x be an eigenvector of a real $n \times n$ matrix A corresponding to the eigenvalue λ. Show that x is an eigenvector corresponding to the eigenvalue λ^{m} of A^{m}, for each $m=1,2,3, \cdots$. Hence show that, if A is
i. an idempotent matrix, then λ must be 0 or 1 .
ii. a nilpotent matrix, then $\psi_{A}(t)=t^{n}$ and $\operatorname{tr}(A)=0$.
(c) Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be eigenvalues of an $n \times n$ matrix A with multiplicities. Prove the following:
i. $\lambda_{j}=a_{j j}+\sum_{i \neq j}\left(a_{i i}-\lambda_{i}\right)$, for $j=1,2, \cdots, n$;
ii. $\operatorname{det} A=\lambda_{1} \times \lambda_{2} \times \cdots \times \lambda_{n}$, where $\operatorname{det} A$ means determinant of A.
(d) Prove that, if two diagonalizable matrices A and B have the same eigenvectors then, $A B=B A$.

Prove the converse of the above statement with an assumption that the eigenvalues of A are all distinct.
2. (a) Define the following terms:
i. minimum polynomial;
ii. irreducible polynomial,
of a square matrix.
(b) Prove the following:
i. If $m(t)$ is the minimum polynomial of an $n \times n$ matrix A and $\psi_{A}(t)$ characteristic polynomial of A, then $\psi_{A}(t)$ divides $[m(t)]^{n}$.
ii. The characteristic and minimum polynomials of a square matrix ha same irreducible factors.
iii. $f(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$ is the minimum polynomial n-square matrix

$$
\left(\begin{array}{cccccc}
0 & 0 & \cdots & 0 & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & 0 & -a_{1} \\
0 & 1 & \cdots & 0 & 0 & -a_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 & 0 & -a_{n-2} \\
0 & 0 & \cdots & 0 & 1 & -a_{n-1}
\end{array}\right)
$$

Hence find the matrix whose minimum polynomial is $t^{4}-5 t^{3}-2 t^{2}+7$
3. (a) Find an orthogonal transformation which reduces the following quadratic to a diagonal form

$$
5 x_{1}^{2}+11 x_{2}^{2}-2 x_{3}^{2}+12 x_{1} x_{3}+12 x_{2} x_{3} .
$$

(b) Simultaneously diagonalize the following pair of quadratic forms

$$
\begin{array}{r}
x_{1}^{2}-x_{2}^{2}+x_{3}^{2}-2 x_{2} x_{3}-2 x_{1} x_{3}-2 x_{1} x_{2} \\
3 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+2 x_{1} x_{2}-2 x_{2} x_{3}-2 x_{1} x_{3}
\end{array}
$$

4. (a) Prove that A is an $n \times n$ real symmetric matrix if and only if there exists an orthogonal matrix Q such that $Q^{T} A Q$ is diagonal.
Find an orthogonal matrix Q and a diagonal matrix D such that $Q^{T} A Q=D$, where

$$
A=\left(\begin{array}{rrr}
-2 & 4 & -2 \\
4 & 4 & -4 \\
-2 & -4 & 5
\end{array}\right)
$$

(b) Define the term inner product in a vector space.

Let $C[0,1]$ be the vector space of all real-valued continuous functions on $[0,1]$. For any two functions $f(x)$ and $g(x)$ in $C[0,1]$, define

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Show that \langle,$\rangle is an inner product on C[0,1]$.
(c) Use the Gram-Schmidt process to find orthonormal basis for the column space of the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 2 \\
1 & 0 & 4 \\
1 & 1 & 0
\end{array}\right)
$$

