

EASTERN UNIVERSITY, SRI LANKA FIRST YEAR EXAMINATION IN SCIENCE - 2016/2017 FIRST SEMESTER(Aug./Sep., 2018) MT 1222 - MATHEMATICAL SOFTWARE

Answer all questions

Time: Three hours

MATHEMATICA

- (a) i. Compute numerical approximations to the square root and cube root of 10 accurate to 20 significant digits.
 - ii. Determine the integer closest to $\sqrt{159}$.
 - iii. Select a random number x, between 0 and 1 and compute $\sin^2 x + \cos^2 x$.
 - iv. Approximate the sum $\frac{1}{15} + \frac{1}{17} + \frac{1}{19} + \dots + \frac{1}{51}$.
 - v. Print all numbers from 1 to 20, which are not multiples of 2, 3, and 5.

1

[5 Marks]

- (b) Create a 5×5 zero matrix.
 - i. Set the second column as $\{1, 2, 3, 4, 5\}$.
 - ii. Set the third column as all entry 3.
 - iii. Add a new row range from 10 to 14.

[6 Marks]

- (c) Consider the list $\{a, b, c, d, e, f, g, h, i\}$.
 - i. Insert an element p at the fourth position.
 - ii. Replace the elements at position three and seven by 2 and 3.
 - iii. Place x at prime-numbered positions. Note that the position is be primality, not for value.
- (d) Compute the values of the first ten derivatives of $f(x) = e^{x^2}$ at x = 0 and g in tabular form.
- Q2.(a) Sketch the graphs of the functions $y = -x^2$, $y = x^2$ and $y = x^2 \sin\left(\frac{1}{x}\right) = [0.02, 0.02]$ on one set of axes.
 - (b) Let P be a point at a distance a from the center of a circle of radius r. The by P as the circle rolls along a straight line is called a trochoid. Its parameare $x = r\theta \sin \theta$, $y = r - a \cos \theta$.
 - i. Sketch the trochoid with r = 1, $a = \frac{1}{2}$ as the circle makes four revolution of the trochoid with r = 1.
 - ii. What would the graph look like if r = 1, a = 2 so that the point circle?
 - (c) Plot the given function, which is parameterized by the following equations $x(t) = \cos t \cos 100t \sin t,$ $y(t) = 2 \sin t \sin 100t.$
 - (d) Consider the range $0 \le t \le 2\pi$. If p dollars are compounded n times p annual interest rate of r, the money will be worth $p\left(1+\frac{r}{n}\right)^{nt}$ dollars after much will the money be worth after t years if it is compounded continuon
 - (e) Given f(x) whose graph is C, the slope of the line tangent to C at $f(x) = \sin x$. Sketch the graph and its tangent line at $a = \frac{\pi}{3}$.

- (c) Consider the list $\{a, b, c, d, e, f, g, h, i\}$.
 - i. Insert an element p at the fourth position.
 - ii. Replace the elements at position three and seven by 2 and 3.
 - iii. Place x at prime-numbered positions. Note that the position is b primality, not for value.
- (d) Compute the values of the first ten derivatives of $f(x) = e^{x^2}$ at x = 0 and g in tabular form.
- Q2.(a) Sketch the graphs of the functions $y = -x^2$, $y = x^2$ and $y = x^2 \sin\left(\frac{1}{x}\right) = (0.02, 0.02)$ on one set of axes.
 - (b) Let P be a point at a distance a from the center of a circle of radius r. The by P as the circle rolls along a straight line is called a trochoid. Its parameters are $x = r\theta \sin \theta$, $y = r a \cos \theta$.
 - i. Sketch the trochoid with r = 1, $a = \frac{1}{2}$ as the circle makes four revolution of the trochoid with r = 1.
 - ii. What would the graph look like if r = 1, a = 2 so that the point circle?
 - (c) Plot the given function, which is parameterized by the following equation $x(t) = \cos t \cos 100t \sin t$, $y(t) = 2 \sin t - \sin 100t$.
 - (d) Consider the range $0 \le t \le 2\pi$. If p dollars are compounded n times p annual interest rate of r, the money will be worth $p\left(1+\frac{r}{n}\right)^{nt}$ dollars after much will the money be worth after t years if it is compounded continuous the second second
 - (e) Given f(x) whose graph is C, the slope of the line tangent to C at $f(x) = \sin x$. Sketch the graph and its tangent line at $a = \frac{\pi}{3}$.

MAPLE

(a) Write down appropriate Maple commands to

i. find the floating approximation of $e^{\frac{\sqrt{163}}{3}\pi}$ using a precision of 30 digits; ii. solve $x^3 - 2.01x^2 - 4.415x + 3.2886 = 0$, correct to 15 decimal places; iii. simplify the expression $\frac{5}{6(4x-1)} + \frac{9}{2(2x+1)} - \frac{3}{1-15x^2}$; iv. compute $(AB)^2$, if $A = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ 1 & -3 & -2 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 2 \\ -1 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. [15 Marks]

(b) Let $f(x) = 5x^2 - 3x + 10$. Plot f(x) with the following options:

- i. points should be cross;
- ii. number of points 55;
- iii. add a frame to the graph;
- iv. graph colour green;
- v. title "GRAPH" with font Courier size 16;
- vi. axes labeled with font Bradway with font size 20;
- vii. indicate a label $f(x) = 5x^2 3x + 10$ at the point (2, 100).

[20 Marks]

The rate of growth of a population of insects in a certain habitat, r(t), measured in thousands of insects per month is given by $r(t) = 10 e^{\left(-\frac{3t}{100}\right)} \cos\left(\frac{\pi t}{6} - 3.5\right)$, where t is measured in months since January 1, 2018. Assume that there are 40,000 insects initially.

- (a) find a function p(t) which gives the size of the population at time t;
- (b) plot p(t) and r(t) in one coordinate system for t between 0 and 24 with different colours;
- (c) when is the population of insects minimal and when maximal during the two year period?
- (d) what are the minimal and maximal values of the population? [15 Marks]