EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE - 2007/2008

FIRST SEMESTER (PROPER/REPEAT)

(March/April 2010)

PH 101 MECHANICS I

Time: 01 hour.

1. State the "Work-Energy theorem". A force $\vec{F}=(4 \vec{i}+16 \vec{j}+12 t \vec{k}) N$ acts on a particle of mass 2 kg initially at the origin with velocity $(2 \vec{i}-\vec{k}) \mathrm{ms}^{-1}$.
a) Find the power of the force at any time $t \mathrm{sec}$.
b) Find the work done by the force in the time interval $t=0$ to $t=1 \mathrm{sec}$.
c) Find the velocity of the particle at time $t=0$ and $t=1 \mathrm{sec}$.
d) Calculate the kinetic energy of the particle when time $t=0$ and $t=1 \mathrm{sec}$.
e) Verify your answer by using the Work-Energy theorem.
2. Explain briefly what is meant by a conservative force. A force $\vec{F}=\left(x^{2}+y\right) \vec{i}+\left(y^{3}+1\right) \vec{j} \mathrm{~N}$, acts on a particle which moves from O to B, along the paths OAB and OB , as indicated in the figure. Here x and y are in meters. What is the work done by the force along the paths $O A B$ and $O B$? Is this force conservative? Explain your answer.

