EASTERN UNIVERSITY, SRI LANKA FIRST EXAMINATION IN SCIENCE - 2015/2016

 FIRST SEMESTER (PROPER/REPEAT)

 FIRST SEMESTER (PROPER/REPEAT)}
(JULY/AUGUST 2017)

PH 101 MECHANICS I

e: 01 hour

wer ALL Questions.

Briefly explain the physical meaning of speed, velocity and acceleration of a car moving on a straight line.

4 car is moving on a straight road with a speed of $90 \mathrm{~km} \mathrm{~h}^{-1}$ and suddenly apply the brake to reduce the speed to $50 \mathrm{~km} \mathrm{~h}^{-1}$ over a distance of 100 m as shown in the below figure. Assume all the resistance are negligible.

(a) Calculate the acceleration of the car under uniform motion with constant speed.
(b) Estimate the elapsed time to breaks from $90 \mathrm{~km} \mathrm{~h}^{-1}$ to $50 \mathrm{~km} \mathrm{~h}^{-1}$.
(c) The car continues to slow down from point A estimate the time and distance to bring the car to rest from $90 \mathbf{k m ~ h} \mathbf{h}^{-1}$.
(d) What is the total breaking time, if the car moving in a different initial velocity, with the acceleration calculated in part (a) and come to rest after traveling $\mathbf{5 0 0} \mathbf{~ m}$?
02. A particle of mass m is moving horizontally along the x-axis with velocity U and with a stationary particle of mass M in a head on elastic collision. Show that th of the two particles immediately after the collision are

$$
V_{1}=\left[\frac{m-m}{m+M}\right] U \quad \text { and } \quad V_{2}=\left[\frac{2 m}{m+M}\right] U
$$

Two identical balls of equal mass 5 m are initially at rest. As show in the figure of mass m moving with speed U along the positive x-direction undergoes a head collision with one of the ball B. Show that

(a) after the first collision, the ball C has a speed of $2 U / 3$ to the negative x-dired (b) the ball B has a speed of $U / 3$ to the positive x-direction.

After the first collision it collides elastically with the ball A. Show that
(c) the speed of the ball C after the second collision is $4 U / 9$ to the positive x-dire N
(d) the speed of the ball \mathbf{A} after the second collision is $2 U / 9$ to the negative x-dire el
(e) state whether any possibilities for further collision to be occur between the ball

