EASTERN UNIVERSITY, SRI LANKA
 FIRST EXAMINATION IN SCIENCE - 2016/2017
 FIRST SEMESTER - Repeat (August / September 2018)

 PH 101 MECHANICS I

 PH 101 MECHANICS I}
me : 01 hour
iswer ALL Questions
(a) Briefly explain the Conservative force, Work done, and Work-Energy principle in Physics.
(b) A particle is moving with a velocity $v(t)$ under the influence of an external force $F(t)$. Show that the work done W by the force between the time interval t_{1} to t_{2} is,

$$
W=\int_{t_{1}}^{t_{2}}(\vec{F} \cdot \vec{v}) d t
$$

(c) A particle of mass 10 Kg moves with an initial velocity $(5 i-2 k) \mathrm{ms}^{-1}$ under the influence of an external force $\vec{F}=1 i+2 j+3 k \mathrm{~N}$ with the usual notations. Find the followings,
(i) power of the force at any time t sec.
(ii) work done by the force in the time interval between 0 to 20 sec .
(iii) velocity and the position vector of the particle when $\mathrm{t}=20 \mathrm{sec}$.
(iv) kinetic energy of the particle when $t=20 \mathrm{sec}$ and verify your answer by considering the relationship between work and energy.
(a) Briefly explain the meaning of elastic and inelastic collisions in the particle motion.
(b) Consider an elastic head-on collision between two bodies and show that the relative velocities of the bodies before and after the collision is equal.
(c) A 3 kg ball moving with the velocity of $10 \mathrm{~ms}^{-1}$ head-on collision with a 5 kg ball moving in the opposite direction with the velocity of $20 \mathrm{~ms}^{-1}$. Find the velocity of each balls after the collision for following each conditions, if
(i) the elastic constant $\mathrm{e}=\frac{5}{6}$
(ii) the balls stick together, and
(iii) the collision is perfectly elastic.

