EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE - 2007/2008
FIRST SEMESTER (PROPER/REPEAT)

Time: 01 hour.
Answer ALL Questions

1. State and prove Archimedes law.

A cylindrical container of length L is fully filled with a liquid which has mass density ρ. It is placed on a weigh-scale (which measures the downward force on the pan of the scale), and the scale reading is \mathbf{W}. A light ball (which would float on the liquid if allowed to do so) of volume \mathbf{V} and mass \mathbf{m} is pushed down below the surface of the liquid with a fixed rigid rod of negligible volume, as shown in the figure (i).

(a) What is the mass \mathbf{M} of liquid which overflowed while the ball was being pushed into the container?
(b) What is the reading \mathbf{R}_{1} on the scale when the ball is fully immersed?
(c) If instead of being pushed down by a rod, the ball is held in place by a fine string attached to the bottom of the container as shown in figure (ii). What is the tension T in the string?
(d) In part(c), what is the reading \mathbf{R}_{2} on the scale?
(e) If the string is cut, what will be the initial acceleration a of the ball? Assume that viscosity effects are negligible.
2. State the meanings of the terms Stress and Strain.

Using the terms Stress and Strain, show that the Hooke's Law is given by;

$$
F=k e, \text { where } k=\frac{\lambda}{l}
$$

Hence show that the energy stored in an elastic string is given by;

$$
\begin{aligned}
\lambda e^{2} / 2 l \quad \text { where, } \mathrm{F} & =\text { force acting on a string } \\
\mathrm{k} & =\text { constant } \\
\mathrm{e} & =\text { extension on a string } \\
l & =\text { natural length of the string } \\
\lambda & =\text { elastic modules }
\end{aligned}
$$

A trolley of mass m runs down a smooth track of constant inclination $\frac{\pi}{6}$ to the horizontal, carrying at its front a light spring of natural length \boldsymbol{a} and elastic modulus $\frac{m g a}{c}$, where c is a constant. The spring obeys Hooke's law up to the point, when it is fully compressed by a length of $\frac{a}{4}$. When the trolley has traveled a distance b from rest, the spring meets a fixed stop.
(a) Determine the elastic energy stored in the spring
(b) Show that, when the spring has been compressed to a distance x, where $x<\frac{3 a}{4}$, the speed v of the trolley is given by $\frac{c v^{2}}{g}=c(b+x)-x^{2}$.
(c) Given that $c=\frac{a}{10}$ and $b=2 a$, find the total distance covered by the trolley before it momentarily comes to rest for the first time.

