EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE - 2009/20/0 FIRST SEMESTER (PROPER/REPEAT)

(June 2011)

PH 201 ATOMIC PHYSICS AND QUANTUM MECHANICS

Time: 02 hour.
Answer ALL Questions

Mass of an electron $m_{e}=9.109 \times 10^{-31} \mathrm{~kg}$
Planck's constant $h=6.625 \times 10^{-34} \mathrm{Js}$
Velocity of light in free space $c=3 \times 10^{8} \mathrm{~ms}^{-1}$

1. Briefly describe the Compton experiment together with th experimental results. Derive the Compton's description to explai the observed shift in the wavelength $\Delta \lambda=\frac{h}{m_{e} c}(1-\operatorname{Cos} \phi)$, where is an angle of scattered photon to the direction of the inciden beam.

A beam of x-rays of wavelength $1.00 \AA$ is incident on a carbo target. The scattered x-rays are detected at an angle of 90° to th direction of the incident beam. Find the Compton shift in th wavelength.
2. The electron configuration of an atom determines it's physical an chemical properties. How many quantum numbers are needed completely describe an electron in an atom? Describe these wit their notations.
a. State Pauli's Exclusion Principle and Hund's Rule for fillii electrons in atomic orbital.
b. Outline the allowed combinations (values) of quantu numbers of electrons in an atom.
c. Identify the combinations (values) of electronic quantu numbers of Carbon ($\mathrm{Z}=6$) atom.
d. Outline the order of electron filling in the $2 p$ orbital Fluorine ($Z=9$) atom and find it's spin quantum number.
3. State the Heisenberg's uncertainty principle associated with time-energy and position-momentum.

An atom can radiate at any time after it is excited. It is found that in a typical case the average excited atom has a life time of about 10^{-8} sec. i.e. during this period it emits a photon and is de-excited.
a) Calculate the uncertainty ΔE in the energy of the excited state of the atom.
b) What is the minimum uncertainty Δv in the frequency of the photon?
c) Most photons from Sodium atoms are in two spectral lines at about wavelength $\lambda=5890 \AA$. What is the fraction $\frac{\Delta v}{v}$ of either line?
4. A particle of mass m and Energy E is moving in a potential V inside an infinite square potential well of width a, described by,

$$
\begin{aligned}
& V=0, \quad \text { for } 0 \leq x \leq a \\
& V \rightarrow \infty, \text { for } x>a \cdot \& x<0
\end{aligned}
$$

a) Write down the time-independent Schrödinger equation in a rectangular cartesian co-ordinate system, for the motion of the particle.
b) State clearly the boundary conditions and normalization condition for the wave function $\varphi(x)$.
c) Using the above conditions, show that the wave function of the particle is $\varphi=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a}\right) x$.
d) Calculate the possible values of Energies E_{1}, E_{2}, E_{3} for an electron in an atom.

