EASTERN UNIVERSITY, SRI LANKA
 FIRST EXAMINATION IN SCIENCE-2017/2018
 FIRST SEMESTER (August / September 2018)
 PH 1013 GENERAL PHYSICS

Time : 03 hour
Answer ALL Questions

Question 1

(a) Define and write down the mathematical expressions for "average velocity" and "instantaneous velocity".
... (4\% marks)
A particle located at position $x=0$ at time $t=0$, starts moving along the positive x -direction with a velocity v that varies as $v=k x^{\frac{1}{2}}$.
(i) Find the expressions for displacement, velocity and acceleration of the particle as a function of t.
(ii) What is the average velocity of the particle over the first d distance of its path?.
(b) A particle is moving in two dimensions and its position is given by the polar coordinates (r, θ). Show that the;
... (2% marks)
(i) velocity of the particle is $\vec{v}=\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta}$
... (2% marks)
Where, \vec{e}_{r} and \vec{e}_{θ} are the unit vectors along and perpendicular to the radial direction respectively.
(c) A particle moves in two dimensions $r=2 \theta$, where θ varies with time t as $\theta=t^{2}$. Show that the acceleration of the particle is $\vec{a}=4\left(1-2 t^{4}\right) \vec{e}_{r}+20 t^{2} \vec{e}_{\theta}$.
... (2% marks)

Question 2
(a) Explain briefly what is meant by Conservative force, Work done and Work-Energy principle.
(b) A particle is moving with a velocity $v(t)$ under the influence of a force $F(t)$. Show that the work done W by the force between the time interval t_{1} to t_{2} is,
... (3\% marks)

$$
W=\int_{t_{1}}^{t_{2}}(\vec{F} \cdot \vec{v}) d t
$$

(c) A particle of mass 5 Kg moves with an initial velocity $(10 i-k) \mathrm{ms}^{-1}$ under the influence of an external force $\vec{F}=5 \vec{\imath}+10 \vec{\jmath}+15 \vec{k} \mathrm{~N}$. Find the,
(i) power of the force at any time t sec.
... (2\% marks)
(ii) work done by the force in the time interval $\mathrm{t}=0 \mathrm{sec}$ to $\mathrm{t}=10 \mathrm{sec} . \quad \ldots$ (2% marks)
(iii) velocity and the position vector of the particle when $t=10 \mathrm{sec}$.
... (2\% marks)
(iv) Calculate the kinetic energy of the particle when $\mathrm{t}=10 \mathrm{sec}$ and verify your answer by considering the relationship between work and energy.
... (2% marks $)$

Question3
(a) Briefly explain the meaning of wavelength, frequency and amplitude as applied to waves.
...(6\% marks)
(b) Distinguish between wave velocity and propagation velocity in wave transmission.
...(2\% marks)
(d) Briefly explain the superposition and interference of waves.
...(2% marks)
(e) Distinguish between constructive and destructive interference of waves.
... (2\% marks)
(f) Briefly explain the Doppler Effect in sound waves.
...(2\% marks)
(g) A ship is chasing a submarine. To detect the submarine, the ship uses sonar, sending out a sound wave and detecting the reflected sound. The submarine is moving at $8 \mathrm{~ms}^{-1}$ and the ship chases it at $20 \mathrm{~ms}^{-1}$. If the ship sends out a 700 Hz sound wave, what frequency do they hear for the return wave? The speed of sound in water is $1500 \mathrm{~ms}^{-1}$.
...(5\% marks)

Question 4

(a) Define the following terms in thermodynamics; thermal physics, temperature, heat, internal energy, and thermal equilibrium.
... (5\% marks)
(b) Define the Zeroth law of thermodynamics.
...(2\% marks)
(c) Briefly explain the absolute zero in thermodynamics?
... (2% marks)
(d) Brief the ideal gas and the ideal gas law.
... (3\% marks)
A 3 liter tank contains oxygen gas at $20^{\circ} \mathrm{C}$ and gauge pressure of $25 \times 10^{5} \mathrm{~Pa}$. Estimate the mass of oxygen in the tank. You may use the molar mass of oxygen gas is $32 \mathrm{~g} / \mathrm{mol}$. Atmospheric pressure to be $1 \times 10^{5} \mathrm{~Pa}$ and Universal gas constant is $8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$.
...(3\% marks)

Question 5

(a) Describe what interference of light is.
... (3\% marks)
A double slit experimental arrangement is shown in Figure 1, where the double slit is illuminated with monochromatic parallel beam of light. In such an arrangement, $I_{1}=I_{2}=I_{0}$ and the intensity

