EASTERN UNIVERSITY, SRI LANKA
 FIRST EXAMINATION IN SCIENCE - 2017/2018

FIRST SEMESTER (August / September 2018)

PH 1013 GENERAL PHYSICS

Time : 03 hour
Answer ALL Questions

Question 1

(a) Define and write down the mathematical expressions for "average velocity" and "instantaneous velocity".
... (4\% marks)
A particle located at position $x=0$ at time $t=0$, starts moving along the positive x -direction with a velocity v that varies as $v=k x^{\frac{1}{2}}$.
(i) Find the expressions for displacement, velocity and acceleration of the particle as a function of t.
... (9\% marks)
(ii) What is the average velocity of the particle over the first d distance of its path?.
... (1\% marks)
(b) A particle is moving in two dimensions and its position is given by the polar coordinates (r, θ). Show that the;
(i) velocity of the particle is $\vec{v}=\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta}$
... (2% marks)
(ii) acceleration of the of the particle is $\vec{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \vec{e}_{\theta}$.
... (2\% marks)
Where, \vec{e}_{r} and \vec{e}_{θ} are the unit vectors along and perpendicular to the radial direction respectively.
(c) A particle moves in two dimensions $r=2 \theta$, where θ varies with time t as $\theta=t^{2}$. Show that the acceleration of the particle is $\vec{a}=4\left(1-2 t^{4}\right) \vec{e}_{r}+20 t^{2} \vec{e}_{\theta}$.
... (2% marks)

Question 2

(a) Explain briefly what is meant by Conservative force, Work done and Work-Energy principle.
... (3\% marks)
(b) A particle is moving with a velocity $v(t)$ under the influence of a force $F(t)$. Show that the work done W by the force between the time interval t_{1} to t_{2} is,

$$
W=\int_{t_{1}}^{t_{2}}(\vec{F} \cdot \vec{v}) d t
$$

(c) A particle of mass 5 Kg moves with an initial velocity $(10 i-k) \mathrm{ms}^{-1}$ under the influence of an external force $\vec{F}=5 \vec{i}+10 \vec{j}+15 \vec{k} N$. Find the,
(i) power of the force at any time t sec.
(ii) work done by the force in the time interval $\mathrm{t}=0 \sec$ to $\mathrm{t}=10 \mathrm{sec}$.
... (2\% marks)
velocity and the position vector of the particle when $t=10 \mathrm{sec}$.
... (2% marks $)$
engy of the particle when $t=10 \mathrm{sec}$ and verify your answer by (iv) Calculate the kinetic energy of work and energy.
... (2% marks $)$ considering the relationship between work and energy.

Question 3

(a) Briefly explain the meaning of wavelength, frequency and amplitude as applied to waves.
...(6% marks)
(b) Distinguish between wave velocity and propagation velocity in wave transmission.
(d) Briefly explain the superposition and interference of waves.
... (2% marks)
... (2% marks)
(e) Distinguish between constructive and destructive interference of waves.
... (2% marks $)$
(f) Briefly explain the Doppler Effect in sound waves.
... (2% marks)
(g) A ship is chasing a submarine. To detect the submarine, the ship uses sonar, sending out a sound wave and detecting the reflected sound. The submarine is moving at $8 \mathrm{~ms}^{-1}$ and the ship chases it at $20 \mathrm{~ms}^{-1}$. If the ship sends out a 700 Hz sound wave, what frequency do they hear chases it at $20 \mathrm{~ms}^{-1}$. If the return wave? The speed of sound in water is $1500 \mathrm{~ms}^{-1}$.
... (5% marks)
, heat, internal

Question 4

(a) Define the following terms in thermodynamics; thermal physics, temperat energy, and thermal equilibrium.
...(2% marks $)$
(b) Define the Zeroth low of thermodynamics.
... $(2 \%$ marks $)$
(c) Briefly explain the absolute zero in thermodynamics?
... (3% marks)
(d) Brief the ideal gas and the ideal gas law.

A 3 liter tank contains oxygen gas at $20^{\circ} \mathrm{C}$ and gauge pressure of $25 \times 10^{5} \mathrm{~Pa}$. Estimate the mass of oxygen in the tank. You may use the molar mass of oxygen gas is $32 \mathrm{~g} / \mathrm{mol}$. Atmospheric pressure to be $1 \times 10^{5} \mathrm{~Pa}$ and Universal gas constant is $8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$.
... (3\% marks)

Question 5

(a) Describe what interference of light is.

A double slit experimental arrangement is shown in Figure 1, where the double slit is illuminated with monochromatic parallel beam of light. In such an arrangement, $I_{1}=I_{2}=I_{0}$ and the intensity
distribution in the plane of P is given by $I_{I n}=2 I_{0} \cos ^{2} \gamma$, where $2 \gamma=\frac{2 \pi}{\lambda} d \sin \theta$ is the phase difference between the two interfering beams.
(b) Show that maxima and minima are observed at angles $\theta_{m}=\sin ^{-1}\left[m \frac{\lambda}{d}\right]$ and $\theta_{m}=\sin ^{-1}\left[\left(m+\frac{1}{2}\right) \frac{\lambda}{d}\right]$ respectively.
... (4\% marks)
(c) Give a schematic plot for $I_{\text {Int }}$ vs x_{m}
... (4\% marks)

Figure 1

Question 6

(a) Describe what diffraction of light is, and distinguish Fraunhofer diffraction from Fresnel diffraction.
If diffraction effect is also taken into consideration, the above intensity distribution of the double slit is modified and given by

$$
\begin{equation*}
I_{P}=I_{0}^{*}\left(\frac{\sin \beta}{\beta}\right)^{2} \cos ^{2} \gamma \tag{1}
\end{equation*}
$$

where $\beta=\frac{2 \pi}{\lambda} b \sin \theta$ and b is the width of the slits.
(b) Obtain the conditions for principal maxima and minima of the diffraction term $I_{D i f}=I_{0}^{*}\left(\frac{\sin \beta}{\beta}\right)^{2}$.
... (4\% marks)
The Fraunhofer diffraction pattern of double slits in the above arrangement is observed using a monochromatic laser light of wavelength $6000 \AA$, which is shown in the Figure 2. If $D=6$ meters, then
(c) By measuring the $\sin \theta$ value of a bright fringe denoted by P_{1}, find its intensity (in terms of I_{0}^{*}) and the separation of the slits d.
... (8% marks)
(d) By using the $2^{\text {nd }}$ missing order, find the width of the slits b.
... (5\% marks)

Figure 2: Fraunhofer Intensity distribution of double slits as observed on the screen in the experimental arrangement shown in Figure 1.
distribution in the plane of P is given by $I_{I n}=2 I_{0} \cos ^{2} \gamma$, where $2 \gamma=\frac{2 \pi}{\lambda} d \sin \theta$ is the phase difference between the two interfering beams.
(b) Show that maxima and minima are observed at angles $\theta_{m}=\sin ^{-1}\left[m \frac{\lambda}{d}\right]$ and $\theta_{m}=\sin ^{-1}\left[\left(m+\frac{1}{2}\right) \frac{\lambda}{d}\right]$ respectively.
... (4\% marks)
(c) Give a schematic plot for $I_{\text {Int }}$ vs x_{m}
... (4\% marks)

Figure 1

Question 6

(a) Describe what diffraction of light is, and distinguish Fraunhofer diffraction from Fresnel diffraction.
If diffraction effect is also taken into consideration, the above intensity distribution of the double slit is modified and given by

$$
\begin{equation*}
I_{P}=I_{0}^{*}\left(\frac{\sin \beta}{\beta}\right)^{2} \cos ^{2} \gamma \tag{1}
\end{equation*}
$$

where $\beta=\frac{2 \pi}{\lambda} b \sin \theta$ and b is the width of the slits.
(b) Obtain the conditions for principal maxima and minima of the diffraction term $I_{\text {Dif }}=I_{0}^{*}\left(\frac{\sin \beta}{\beta}\right)^{2}$.
... (4\% marks)
The Fraunhofer diffraction pattern of double slits in the above arrangement is observed using a monochromatic laser light of wavelength $6000 \AA$, which is shown in the Figure 2. If $D=6$ meters, then
(c) By measuring the $\sin \theta$ value of a bright fringe denoted by P_{1}, find its intensity (in terms of I_{0}^{*}) and the separation of the slits d.
... (8\% marks)
(d) By using the $2^{\text {nd }}$ missing order, find the width of the slits b.
... (5\% marks)

Figure 2: Fraunhofer Intensity distribution of double slits as observed on the screen in the experimental arrangement shown in Figure 1.

