EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE 2010/2011 FIRST YEAR FIRST SEMESTER (Apr./May, 2017)
XTMT 103 - VECTOR ALGEBRA \& CLASSICAL MECHANICS I (SPECIAL REPEAT)

1. (a) For any three vectors $\underline{a}, \underline{b}, \underline{c}$, prove that

$$
\underline{a} \wedge(\underline{b} \wedge \underline{c})=(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{a} \cdot \underline{b}) \underline{c} .
$$

(b) Let the vector \underline{x} be given by the equation $\lambda \underline{x}+\underline{x} \wedge \underline{a}=\underline{b}$, where $\underline{a}, \underline{b}$ are constant vectors and λ is a non-zero scalar. Show that \underline{x} satisfies the equation

$$
\lambda^{2}(\underline{x} \wedge \underline{a})+(\underline{a} \cdot \underline{b}) \underline{a}-\lambda|\underline{a}|^{2} \underline{x}+\lambda(\underline{a} \wedge \underline{b})=0 .
$$

Hence find \underline{x} in terms of $\underline{a}, \underline{b}$ and λ.
(c) Find the vector \underline{x} and the scalar λ which satisfy the equations

$$
\underline{a} \wedge \underline{x}=\underline{b}+\lambda \underline{a}, \quad \underline{a} \cdot \underline{x}=2
$$

where $\underline{a}=\underline{i}+2 \underline{j}-\underline{k}$ and $\underline{b}=2 \underline{i}-\underline{j}+\underline{k}$.
2. Define the terms divergence and curl of a vector field \underline{F}.
(a) Let $\underline{F}=\underline{F}(x, y, z)$ be a vector function and $\phi=\phi(x, y, z)$ be a scalar function. Prove that

$$
\operatorname{div}(\phi \underline{F})=\phi \operatorname{div} \underline{F}+\operatorname{grad} \phi \cdot \underline{F} .
$$

Hence show that

$$
\operatorname{div}\left(r^{n} \underline{r}\right)=(n+3) r^{n} .
$$

(b) Define the term solenoidal vector.

Show that the vector

$$
\underline{A}=(x+3 y) \underline{i}+(y-3 z) \underline{j}+(x-2 z) \underline{k}
$$

is solenoidal.
(c) Define the term irrotational vector.

Determine the constants a, b and c so that the vector

$$
\underline{F}=(x+2 y+\dot{a}) \underline{i}+(b x-3 y-z) \underline{j}+(4 x+c y+2 z) \underline{k}
$$

is irrotational.
3. State the Stokes' theorem.

(a) Verify the Stokes' theorem for a vector $\underline{A}=(2 x-y) \underline{i}-y z^{2} \underline{j}-y^{2} z \underline{k}$, where the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
(b) Evaluate $\iint_{V} \phi d V$, where $\phi=45 x^{2} y$ and V is the closed region bounded by the plis $4 x+2 y+z=8, x=0, y=0, z=0$.
4. A particle of mass m rests on a smooth horizontal table attached through a fixed poin the table by a light elastic string of modules $m g$ and unstretchẻd length ' a '. Initially string is just taut and the particle is projected along the table in a direction perpendic to the line of the string with velocity $\sqrt{\frac{4 a g}{3}}$. Prove that if r is the distance of the part from the fixed point at time t then

$$
\frac{d^{2} r}{d t^{2}}=\frac{4 g a^{3}}{3 r^{3}}-\frac{g(r-a)}{a}
$$

Prove also that the string will extend until its length is $2 a$ and that the velocity of the particle is then half of its initial velocity.
5. A particle moves in a plane with the velocity v and the tangent to the path of the particle makes an angle ψ with a fixed line in the plane. Prove that the components of acceleration of the particle along the tangent and perpendicular to it are $\frac{d v}{d t}$ and $v \frac{d \psi}{d t}$ respectively.

A body attached to a parachute is released from an aeroplane which is moving horizontally with velocity v_{0}. The parachute exerts a drag opposing motion which is k times the weight of the body, where k is a constant. Neglecting the air resistance to the motion of the body, prove that if v is the velocity of the body when its path is inclined an angle ψ to the horizontal, then

$$
v=\frac{v_{0} \sec \psi}{(\sec \psi+\tan \psi)^{k}}
$$

Prove that if $k=1$, the body cannot have a vertical component of velocity greater than $\frac{v_{0}}{2}$. *
6. State the angular momentum principle for motion of a particle.

A right circular cone with a semi vertical angle α is fixed with axis vertical and vertex downards. A particle of mass m is held at the point A on the smooth inner surface of the cone at a distance ' a ' from the axis of revolution. The particle is projected perpendicular to $O A$ with velocity ' u ', where O is the vertex of the cone. Show that the particle rises above the level of A if $u^{2}>a g \cot \alpha$ and greatest reaction between the particle and the surface is

$$
m g\left(\sin \alpha+\frac{u^{2}}{a g} \cos \alpha\right)
$$

