

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS EXTERNAL DEGREE EXAMINATION IN SCIENCE 2010/2011 FIRST YEAR FIRST SEMESTER (Apr./May, 2017) XTMT 103 - VECTOR ALGEBRA & CLASSICAL MECHANICS I (SPECIAL REPEAT)

			A second and a second s
nswer all questions	i.		Time : Three hours
	<u> </u>	а 	
1. (a) For any three vectors \underline{a} , \underline{b} , \underline{c} , prove that			

(b) Let the vector <u>x</u> be given by the equation λ<u>x</u>+<u>x</u>∧<u>a</u> = <u>b</u>, where <u>a</u>, <u>b</u> are constant vectors and λ is a non-zero scalar. Show that <u>x</u> satisfies the equation

 $a \wedge (b \wedge c) = (a \cdot c) \ b - (\underline{a} \cdot \underline{b}) \ \underline{c}.$

 $\lambda^2(\underline{x} \wedge \underline{a}) + (\underline{a} \cdot \underline{b})\underline{a} - \lambda |\underline{a}|^2 \underline{x} + \lambda(\underline{a} \wedge \underline{b}) = 0.$

Hence find \underline{x} in terms of $\underline{a}, \underline{b}$ and λ .

(c) Find the vector \underline{x} and the scalar λ which satisfy the equations

$$\underline{a} \wedge \underline{x} = \underline{b} + \lambda \underline{a}, \quad \underline{a} \cdot \underline{x} = 2,$$

where $\underline{a} = \underline{i} + 2\underline{j} - \underline{k}$ and $\underline{b} = 2\underline{i} - \underline{j} + \underline{k}$.

- 2. Define the terms divergence and curl of a vector field \underline{F} .
 - (a) Let $\underline{F} = \underline{F}(x, y, z)$ be a vector function and $\phi = \phi(x, y, z)$ be a scalar function. Prove that

$$\operatorname{div}(\phi \underline{F}) = \phi \operatorname{div} \underline{F} + \operatorname{grad} \phi \cdot \underline{F}.$$

Hence show that

$$\operatorname{div}(r^n \underline{r}) = (n+3) r^n.$$

(b) Define the term *solenoidal vector*.Show that the vector

$$\underline{A} = (x+3y)\underline{i} + (y-3z)j + (x-2z)\underline{k}$$

is solenoidal.

(c) Define the term *irrotational vector*.

Determine the constants a, b and c so that the vector

$$\underline{F} = (x+2y+az)\underline{i} + (bx-3y-z)\underline{j} + (4x+zy+2z)\underline{k}$$

is irrotational.

- 3. State the *Stokes*' theorem.
 - (a) Verify the Stokes' theorem for a vector $\underline{A} = (2x y) \underline{i} yz^2 \underline{j} y^2 z \underline{k}$, where \underline{S} the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.
 - (b) Evaluate $\iint_V \phi dV$, where $\phi = 45x^2y$ and V is the closed region bounded by the pla 4x + 2y + z = 8, x = 0, y = 0, z = 0.
- 4. A particle of mass m rests on a smooth horizontal table attached through a fixed point the table by a light elastic string of modules mg and unstretched length 'a'. Initially string is just taut and the particle is projected along the table in a direction perpendic to the line of the string with velocity $\sqrt{\frac{4ag}{3}}$. Prove that if r is the distance of the particle from the fixed point at time t then

$$\frac{d^2\underline{r}}{dt^2} = \frac{4ga^3}{3r^3} - \frac{g(r-a)}{a}.$$

Prove also that the string will extend until its length is 2a and that the velocity of the particle is then half of its initial velocity.

5. A particle moves in a plane with the velocity v and the tangent to the path of the particle makes an angle ψ with a fixed line in the plane. Prove that the components of acceleration of the particle along the tangent and perpendicular to it are $\frac{dv}{dt}$ and $v\frac{d\psi}{dt}$ respectively.

A body attached to a parachute is released from an aeroplane which is moving horizontally with velocity v_0 . The parachute exerts a drag opposing motion which is k times the weight of the body, where k is a constant. Neglecting the air resistance to the motion of the body, prove that if v is the velocity of the body when its path is inclined an angle ψ to the horizontal, then

$$v = \frac{v_0 \sec \psi}{(\sec \psi + \tan \psi)^k} \; .$$

Prove that if k = 1, the body cannot have a vertical component of velocity greater than $\frac{v_0}{2}$. 6. State the angular momentum principle for motion of a particle.

A right circular cone with a semi vertical angle α is fixed with its axis vertical and vertex downwards. A particle of mass m is held at the point A on the smooth inner surface of the cone at a distance 'a' from the axis of revolution. The particle is projected perpendicular to OA with velocity 'u', where O is the vertex of the cone. Show that the particle rises above the level of A if $u^2 > ag \cot \alpha$ and greatest reaction between the particle and the surface is

$$mg\left(\sin\alpha + \frac{u^2}{ag}\cos\alpha\right).^*$$

3