EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
EXTERNAL DEGREE
FIRST YEAR EXAMINATION IN SCIENCE - 2010/2011
SECOND SEMESTER - (APRIL/MAY, 2017)
EXTMT 104 - DIFFERENTIAL EQUATIONS

AND

FOURIER SERIES
(SPECIAL REPEAT)
Answer All Questions \quad Time Allowed: 3 Hours

Q1. (a) State the necessary and sufficient condition for the differential
equation (DE)

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{1}
\end{equation*}
$$

to be exact.
[10 Marks]
(b) Verify that the condition for an exact differential equation (DE) is satisfied by

$$
[M(x, y) d x+N(x, y) d y] e^{\int f(x) d x}=0
$$

if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}+N f(x) .
$$

[20 Marks]
Hence show that an integrating factor can always be found for the DE (1) if

$$
\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)
$$

is a function of x only.
[10 Marks]
Hence using this method solve the following DE

$$
\left(y^{2}+3 x y+2 y\right) d x+\left(x y+x^{2}+x\right) d y=0
$$

[30 Marks]
(c) If, $\tan x$, is a particular solution of the following nonlinear Riccati equation

$$
\begin{equation*}
\frac{d y}{d x}-y^{2}-1=0 \tag{2}
\end{equation*}
$$

then obtain the general solution of the equation (2).
[30 Marks]
Q2. (a) If $F(D)=\sum_{i=0}^{n} p_{i} D^{i}$, where $D \equiv \frac{d}{d x}$ and $p_{i}, i=1, \ldots, n$, are constants with $p_{0} \neq 0$, prove the following formulas:
(i) $\frac{1}{F(D)} e^{\alpha x}=\frac{1}{F(\alpha)} e^{\alpha x}$, where α is a constant and $F(\alpha) \neq 0$;
(ii) $\frac{1}{F(D)} e^{\alpha x} V=e^{\alpha x} \frac{1}{F(D+\alpha)} V$, where V is a function of x.
[40 Marks]
(b) Find the general solution of the following differential equations by using the results in (a) :
(i) $\left(D^{4}-2 D^{2}+1\right) y=40 \cosh x$;
(ii) $\left(D^{2}-6 D+13\right) y=8 e^{3 x} \sin 2 x$.

Q3. (a) Let $x=e^{t}$. Show that

$$
x \frac{d}{d x} \equiv \mathcal{D}, \quad x^{2} \frac{d^{2}}{d x^{2}} \equiv \mathcal{D}^{2}-\mathcal{D}
$$

and

$$
x^{3} \frac{d^{3}}{d x^{3}} \equiv \mathcal{D}(\mathcal{D}-1)(\mathcal{D}-2)
$$

where $\mathcal{D} \equiv \frac{d}{d t}$.
[20 Marks]
Use the above results to find the general solution of the following Cauchy-Euler differential equation

$$
\left(x^{3} D^{3}+3 x^{2} D^{2}+x D+8\right) y=65 \cos (\log x)
$$

where $D \equiv \frac{d}{d x}$.
[40 Marks]
(b) Define what is meant by orthogonal trajectories of curves.
[10 Marks]
Find the orthogonal trajectories of the family of curves

$$
r=\frac{a \theta}{1+\theta},
$$

where a is a constant.
[30 Marks]

Q4. (a) Define what is meant by the point, ' $x=x_{0}$ ', being
(i) an ordinary ;
(ii) a singular;
(iii) a regular singular
point of the DE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0,
$$

where the prime denotes differentiation with respect to x, and $p(x)$ and $q(x)$ are rational functions.
[30 Marks]
(b) (i) Find the regular singular point(s) of the DE

$$
\begin{equation*}
4 x y^{\prime \prime}+2 y^{\prime}-7 y=0 . \tag{3}
\end{equation*}
$$

(ii) Use the method of Frobenius to find the general solution of the equation (3).

Q5. (a) Solve the following system of DEs:
(i) $\frac{d x}{1}=\frac{d y}{-2}=\frac{d z}{3 x^{2} \sin (y+2 x)}$;
(ii) $\frac{d x}{x^{2}+y^{2}-y z}=\frac{d y}{x z-x^{2}-y^{2}}=\frac{d z}{z(x-y)}$.
[30 Marks]
(b) Write down the condition of integrability of the total differential equation

$$
P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z=0
$$

[5 Marks]
Hence solve the following equation

$$
\begin{equation*}
(y z+x y z) d x+(x z+x y z) d y+(x y+x y z) d z=0 \tag{4}
\end{equation*}
$$

(You may use the integrating factor $\mu=1 /(x y z)$ for equation (4).)
[15 Marks]
(c) Find the general solution of the following linear first-order partial differential equations:
(i) $x^{2} p+y^{2} q=-z^{2}$;
(ii) $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$.
[30 Marks]
(d) Apply Charpit's method or otherwise to find the complete and the singular solution of the following non-linear first-order partial differential equation

$$
2 x z-p x^{2}-2 q x y+p q=0
$$

Here, $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$.
[20 Marks]
Q6. (a) Utilize the Fourier series of the function

$$
f(x)=|x|, \quad-1 \leq x \leq 1, \quad, \quad,
$$

to show that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{2}} \cos n \pi x=\frac{(2|x|-1) \pi^{\frac{2}{2}}}{4}
$$

Hence deduce that

$$
\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots
$$

[20 Marks]
(b) Use Fourier transform to solve the one-dimensional heat equation

$$
\frac{\partial U}{\partial t}-2 \frac{\partial^{2} U}{\partial x^{2}}=0
$$

subject to the boundary conditions

$$
U(0, t)=0, U(x, 0)=e^{-x}, \quad x>0
$$

and $U(x, t)$ is bounded where $x>0$ and $t>0$.
[40 Marks]
(c) (i) Define the gamma-function $\Gamma(x)$ and beta-function $B(m, n)$, where m, n are positive integers.
(ii) Evaluate the integral

$$
\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d \theta
$$

(You may use the following results without proof

$$
\left.B(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} .\right)
$$

[20 Marks]
\pm
. i

