

2 3 ANIG: 2013

Answer all Questions

Time: Two hours

- 1. Define the terms eigenvalue and eigenvector of a linear transformation.
 - (a) i. Prove that eigenvectors that correspond to distinct eigenvalues of a linear transformation $T: V \to V$ are linearly independent.
 - ii. Let λ be an eigenvalue of an operator $T: V \to V$. Let V_{λ} denotes the set of all eigenvectors of T belonging to the eigenvalue λ . Show that V_{λ} is a subspace of V.
 - (b) Find all eigenvalues and a basis of each eigenspace of the operator T : ℝ³ → ℝ³ defined by T(x, y, z) = (2x + y, y z, 2y + 4z).
- 2. Define the term minimum polynomial of a square matrix.
 - (a) State the Cayley Hamilton theorem.

Find the minimum polynomial of the square matrix

1	0	0	0	0	0	0	0)	
	4	0	0	0	U	U	0	
	0	2	0	0	0	0	0	
	0	0	4	2	0	0	0	
	0	0	1	3	0	0	0	
	0	0	0	0	0	3	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	5	

- (b) Prove that for any square matrix A, the minimum polynomial exists and is unique.
- (c) Let $M = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, where A and B are square matrices. Show that the minimum polynomial m(t) of M is the least common multiple of the minimum polynomials g(t) and h(t) of A and B, respectively.
- 3. (a) Find an orthogonal transformation which reduces the following quadratic form to a diagonal form

$$2x_1^2 - 2x_1x_3 + 2x_2^2 - 2x_2x_3 + 3x_3^2 = 16.$$

(b) Simultaneously diagonalize the following pair of quadratic forms

$$\phi_1 = x_1^2 + 2x_2^2 + 8x_2x_3 + 12x_1x_2 + 12x_1x_3,$$

$$\phi_2 = 3x_1^2 + 2x_2^2 + 5x_3^2 + 2x_2x_3 - 2x_1x_3.$$

4. (a) What is meant by an inner product on a vector space.

Let $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$, where $x_i, y_i \in \mathbb{R}, i = 1, 2, ..., n$. Let the inner product $\langle ..., \rangle$ be defined on \mathbb{R}^n as

$$\langle x, y \rangle = xy^T = \sum_{i=1}^n x_i y_i$$

Show that $(\mathbb{R}^n, < ., . >)$ is an inner product space.

- (b) State and prove Cauchy Schwarz Inequality.
- (c) State the Gram Schmidt Process.

Find the orthonormal set for span of M in \mathbb{R}^4 , where

$$M = \{(1, 0, -1, 0)^T, (0, 1, 2, 1)^T, (2, 1, -1, 0)^T\}.$$