

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE, 2010/2011 FIRST SEMESTER (Nov./Dec., 2012) AM 106 - TENSOR CALCULUS (Proper & Repeat)

Answer all questions	Time : One hour
 (a) Explain what is meant by the following terms: i. Covariant tensor; ii. Contravariant tensor. 	· · · · · · · · · · · · · · · · · · ·
(b) Write down the law of transformation for the following i. A_{mn} ; i. B_r^{pq} ; iii. C_{rt}^{pqs} .	g tensors:
(c) If $ds^2 = g_{ij}dx^i dx^j$ is an invariant, show that g_{ij} is a srank two.	symmetric covariant tensor of
(d) Express the relationship between the following associa	ated tensors:

- i. A^{jkl} and A_{pqr} ;
- ii. $A_{j} \stackrel{k}{\cdot}_{l}$ and A^{qkr} .

1

23 AUG 2013

(e) If $X(i, j) B^j = C_i$, where B^j is an arbitrary contravariant vector and C_i is a covariant vector, then show that X(i, j) is a tensor. What is its rank and type.

2. (a) Define the following:

- i. Christoffel's symbols of the first and second kind;
- ii. Geodesic;
- iii. Covariant derivative of A_p .
- (b) With the usual notations, prove the following:
 - i. $[pq, r] = g_{rs}\Gamma_{pq}^{s};$ ii. $[pm, q] + [qm, p] = \frac{\partial g_{pq}}{\partial x^{m}};$ iii. $\frac{\partial g^{pq}}{\partial x^{m}} + g^{pn}\Gamma_{mn}^{q} + g^{qn}\Gamma_{mn}^{p} = 0.$

Hence show that,

 $g_{jk;q} = 0.$

(c) Show that the non-vanishing Christoffel's symbols of the second kind in cylindrical coordinate (ρ, ϕ, z) are given by

$$\Gamma^1_{22} = -\rho, \ \ \Gamma^2_{21} = \frac{1}{\rho}, \ \ \Gamma^2_{12} = \frac{1}{\rho},$$

where $x^{1} = \rho, \ x^{2} = \phi, \ x^{3} = z.$