EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2016/2017
FIRST SEMESTER (August/ September, 2018)
MT 1012 - FOUNDATION OF MATHEMATICS

1. (a) Using truth tables, show that $p \rightarrow q \equiv \sim p \vee q$.

Hence, rewrite the compound statement $\left(\sim p \vee^{*} q\right) \longrightarrow(r \vee \sim q)$ using only the connectives \wedge and \sim, where p, q and r are statements.
(b) Prove the following equivalences using the laws of logic:
i. $p \wedge(p \vee q) \equiv p$;
ii. $\sim(q \vee p) \vee(\sim p \wedge q) \equiv \sim p$,
where p and q are statements.
[30 Marks]
(c) Using the valid argument forms, deduce the conclusion f from the premises given below:

$$
\begin{aligned}
& l \rightarrow \sim k \\
& e \rightarrow k \\
& l \\
& e \vee f \\
& o \rightarrow g
\end{aligned}
$$

2. (a) Let A, B and ${ }^{\prime} C$ be subsets of a set X. Simplify the expression: $\left[(A \cup \Phi) \cap\left(A^{\prime} \cup B\right) \cap(A \cup B \cup X)\right]^{\prime}$.
(b) For any sets A and B, prove that $A \triangle B=(A \cup B) \backslash(A \cap B)$. Hence show that:
i. $A \triangle B$ and $A \cap B$ are disjoint,
ii. $A \cup B=(A \triangle B) \cup(A \cap B)$.
(c) For any set A, B and C, prove that $A \times(B \backslash C)=(A \times B) \backslash(A \times C)$.
3. (a) Let R be a relation defined on $\mathbb{C} \backslash\{0\}$ by $z_{1} R z_{2} \Longleftrightarrow\left|z_{1}\right|\left(\left|z_{2}\right|^{2}+1\right)=\left|z_{2}\right|$ Prove that R is an equivalence relation.
If r is a real number such that $0<r<1$, then show that the equivalence consists of two concentric circles with center at $(0,0)$ and radius r and 1$)^{\text {n }}$
(b) Let λ and μ be equivalence relations on a set A.

Prove that $\lambda \cap \mu$ is an equivalence relation.
Is $\lambda \cup \mu$ an equivalence relation? Justify your answer.
(c) Proye that every partially ordered set has at most one last element.
4. (a) Define the following terms:
i. injective mapping,
ii. surjective mapping,
iii. inverse map!
(b) Let a function $f:[-1, \infty) \rightarrow[-1, \infty)$ be defined by $f(x)=x^{2}+2 x$. Shor bijective, and find f^{-1}.
(c) Let $f: X \rightarrow Y$ be a mapping and A and B be any subsets of X. Prove th f is injective if and only if $f(A \cap B)=f(A) \cap f(B)$.

