EASTERN UNIVERSITY, SRI LANKA
 SECOND EXAMINATION IN SCIENCE - 2010/2011
 FIRST SEMESTER (April, 2013)
 PM 203 - EIGENSPACE AND QUADRATIC FORMS (PROPER \& REPEAT)

Answer all Questions
Time: Two hours

1. Define the terms eigenvalue and eigenvector of a linear transformation.
(a) i. Prove that eigenvectors that correspond to distinct eigenvalues of a linear transformation $T: V \rightarrow V$ are linearly independent.
ii. Let λ be an eigenvalue of an operator $T: V \rightarrow V$. Let V_{λ} denotes the set of all eigenvectors of T belonging to the eigenvalue λ. Show that V_{λ} is a subspace of V.
(b) Find all eigenvalues and a basis of each eigenspace of the operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(2 x+y, y-z, 2 y+4 z)$.
2. Define the term minimum polynomial of a square matrix.
(a) State the Cayley - Hamilton theorem.

Find the minimum polynomial of the square matrix

$$
\left(\begin{array}{lllllll}
2 & 8 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 5
\end{array}\right) .
$$

(b) Prove that for any square matrix A, the minimum polynomial exists and is unique.
(c) Let $M=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$, where A and B are square matrices. Show that the minimum polynomial $m(t)$ of M is the least common multiple of the minimum polynomials $g(t)$ and $h(t)$ of A and B, respectively.
3. (a) Find an orthogonal transformation which reduces the following quadratic form to a diagonal form

$$
2 x_{1}^{2}-2 x_{1} x_{3}+2 x_{2}^{2}-2 x_{2} x_{3}+3 x_{3}^{2}=16 .
$$

(b) Simultaneously diagonalize the following pair of quadratic forms

$$
\begin{gathered}
\phi_{1}=x_{1}^{2}+2 x_{2}^{2}+8 x_{2} x_{3}+12 x_{1} x_{2}+12 x_{1} x_{3} \\
\phi_{2}=3 x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{2} x_{3}-2 x_{1} x_{3} .
\end{gathered}
$$

4. (a) What is meant by an inner product on a vector space.

Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, where $x_{i}, y_{i} \in \mathbb{R}, i=1,2, \ldots, n$.
Let the inner product $\langle,$.$\rangle be defined on \mathbb{R}^{n}$ as

$$
<x, y>=x y^{T}=\sum_{i=1}^{n} x_{i} y_{i}
$$

Show that $\left.\left(\mathbb{R}^{n},<,.\right\rangle\right)$ is an inner product space.
(b) State and prove Cauchy - Schwarz Inequality.
(c) State the Gram Schmidt Process.

Find the orthonormal set for span of M in \mathbb{R}^{4}, where

$$
M=\left\{(1,0,-1,0)^{T},(0,1,2,1)^{T},(2,1,-1,0)^{T}\right\}
$$

