

EASTERN UNIVERSITY, SRI LANKA
 THIRD EXAMINATION IN SCIENCE-2010/2011
 FIRST SEMESTER (April, 2013)
 MT304-GENERAL TOPOLOGY

1. Define the following terms:

- Topology on a set;
- Interior of a set.
(a) Let X be a non-empty set. Let τ be the collection of subsets of X containing the empty set Φ and all subsets whose complements are finite. Is (X, τ) a topological space? Justify your answer.
(b) Let A be a non-empty subset of a topological space (X, τ). Prove that
- i. the interior of A is the largest open set contained in A.
ii. A is open if and only if $A=A^{\circ}$.
(c) Let $X=\{1,2,3\}$ and $\tau=\{X, \Phi,\{1,2\},\{2,3\},\{2\}\}$. Let $A=\{1,2\}$. Find the interior of A.

2. (a) If (X, τ) is a topological space, where $\tau=\left\{A \subseteq X \mid A=\Phi\right.$ or A^{c} is finite $\}$ and X is an infinite set. Prove that $\bar{A}=X$ for any infinite subset A of X.
(b) Let $\left(Y, \tau_{Y}\right)$ be a subspace of a topological space (X, τ). Prove that $A \subseteq Y$ is a closed subset of Y in $\left(Y, \tau_{Y}\right)$ if and only if $A=F \cap Y$ for some closed subset F of X in (X, τ).
(c) Let f be a function from a topological space $\left(X, \tau_{1}\right)$ into a topological space $\left(Y, \tau_{2}\right)$.
i. Prove that, f is continuous on X if and only if $f^{-1}(G)$ is open in X for every open subset G in Y.
ii. Prove that, f is continuous on X if and only if $f^{-1}\left(A^{\circ}\right) \subseteq\left\{f^{-1} \cdot(A)\right\}^{\circ}$ for every subset A of Y.
3. Let (X, τ) be a topological space. Prove that the following statements are equivalent:
(i) X is connected;
(ii) X cannot be expressed as the union of two disjoint non-empty closed sets;
(iii) The only subsets of X which are both open and closed are X and Φ;
(iv) The set of all frontier points of A, denoted by Fr A, is non-empty, for any nonempty proper subset A of X;
(v) There is no continuous function from X onto Y, when $Y=\{0,1\}$ has the discrete topology.
4. Define the following terms:

- Frechet space $\left(T_{1}\right)$;
- Housdorff space $\left(T_{2}\right)$;
- Compact set.
(a) Prove that a closed subset of a compact topological space is compact.
(b) Prove that every compact subset of a Housdorff topological space is closed.
(c) Prove that every Housdorff space is a Frechet space. Is the converse true? Justify your answer.

