EASTERN UNIVERSITY, SRI LANKA FIRST EXAMINATION IN SCIENCE - 2015/2016
 FIRST SEMESTER (May/June 2018)
 PH 102 PHYSICAL OPTICS-I

Time: 01 hour.

Answer ALL Questions

1) When two monochromatic light beams of wavelength λ, intensities I_{1} and I_{2} and phase difference δ are interfered at any point in space as shown in figure 1 , obtain an expression for the resultant intensity distribution I_{P} at point P . Hence, obtain the conditions for maximum and minimum intensities and show a schematic plot describing the variation of I_{p} against δ.

$$
\text { ... }(45 \% \text { marks })
$$

Figure 1
Illustrate by a schematic ray diagram the Lloyd's Mirror experimental arrangement, and show that the phase difference is given $=\frac{2 \pi}{\lambda}\left(\frac{x d}{D}\right)+\pi$; where symbols refer to Figure 1.
... (20% marks)
In a Lloyd's mirror experiment, a source of 580 nm wavelength is placed in front of a screen in 200 cm to obtain the interference fringes. Calculate the distance between the source and its image (virtual source), if the $5^{\text {th }}$ order dark fringe is measured to be 5 cm above the horizontal axis through the mirror.
... (35\% marks)
2) If a thin transparent wedge film of refractive index μ is placed in a medium having refractive index μ_{1}, then the phase difference between the two beams reflected from the two surfaces of the film is given by $\delta=\frac{2 \pi}{\lambda} 2 d \cos \theta \pm \pi$, where " + " is when $\mu<\mu_{1}$ and " - " is when $\mu>\mu_{1}$, and θ is the angle of the incident beam. When the two reflected beams interfere, bright fringes are formed when $\delta=$ $2 m \pi$, where m is an integer.
(a) Distinguish "fringes of equal thickness" from "fringes of equal inclination", describing localized and non-localized fringes.
... (25\% marks)
(b) Fringes of equal thickness are formed due to an air wedge in glass medium. If the fringe width is measured to be 1.2 mm for monochromatic light of wavelength $5890 \AA$, then calculate the inclination of the wedge film.
... (35\% marks)
(c) Fringes of equal inclination are formed with a plane parallel glass plate of refractive index 1.50 and thickness 2 mm kept in air medium. If a monochromatic light source of wavelength $6000 \AA$ is used, then find how many bright fringes are formed in the entire range from normal incidence to grazing incidence.

