FIRST SEMESTER
APRIL/MAY 2013

PH 303 NUCLEAR PHYSICS

Time: 1 hour
Answer ALL Questions

1. What is meant by the term "nuclear binding energy".

Explain in which way an atomic nucleus behaves like a liquid drop model.

The semi-empirical mass formula (SEMF) for a nucleus with atomic mass number A and atomic number Z can be expressed by

$$
M_{A}(A, Z)=Z m_{p}+(A-Z) m_{n}-a_{v} A+a_{s} A^{\frac{1}{3}}+a_{c} \frac{Z(Z-1)}{A^{\frac{1}{3}}}+a_{a s y} \frac{(A-2 Z)^{2}}{A}+\delta
$$

Explain the physical interpretation of the terms corresponding to the parameters a_{v}, a_{s}, a_{c}, $a_{a s y}$, and δ.
(i) Show that for a constant A the SEMF can be reduced to a quadratic function of Z given by

$$
M_{A}(A, Z)=\alpha A+\beta Z+\gamma Z^{2} \mp \delta
$$

where α, β, γ and δ are functions of A.
(ii). Show that the masses $M_{A}(A, Z)$ for a particular set of isobars with an odd A value takes the following form

$$
M_{A}(A, Z)=M_{A}\left(A, Z_{0}\right)+\gamma\left(Z-Z_{0}\right)^{2}
$$

where Z_{0} is the atomic number of the most stable isobar.
(iii) Hence show that the energy released between neighbouring isobars in β decay is

$$
Q_{\beta^{-}}=2 \gamma\left[Z_{0}-Z-\frac{1}{2}\right]
$$

For a typical β^{-}decay, illustrate the variation of $Q_{\beta^{-}}$on a scheme of $M_{A}(A, Z)$ versus Z.
ares aun $\quad P_{3}$
2. Define scattering process and elastic scattering in nuclear physics.

In a laboratory reference frame, an incident particle of mass m_{a} and kinetic energy E_{a} is collides with a target nucleus X which is at rest. A residual nucleus Y of mass m_{Y} and kinetic energy E_{Y} results from the collision together with the emission of a product particle of mass m_{b} and kinetic energy E_{b} at an angle of θ to the direction of the incident particle. Under non-relativistic condition, show that the Q-value of the reaction is given by

$$
Q=\left(\frac{m_{a}}{m_{Y}}-1\right) E_{a}+\left(\frac{m_{b}}{m_{Y}}+1\right) E_{b}-\frac{\sqrt{4 m_{a} m_{b} E_{a} E_{b}}}{m_{Y}} \cos \theta
$$

The α particles of kinetic energy 7.70 MeV collides with ${ }_{7}^{14} \mathrm{~N}$ target nuclei to produce ${ }_{8}^{17} \mathrm{O}$ residual nuclei and protons. The protons are emitted at 90° to the beam of α particles are found to have kinetic energy 4.44 MeV . Determine the Q value of the reaction. Given that the

Mass of α particle $m_{\alpha}=4.002604$ a.m.u
Mass of proton $m_{p}=1.007825$ a.m.u
Mass of oxygen $m_{0}=15.990523$ a.m.u and
$1 \mathrm{a} \cdot \mathrm{m} \cdot \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$

