

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS EXTERNAL DEGREE THIRD EXAMINATION IN SCIENCE-2008/2009 SECOND SEMESTER (Feb./Apr., 2015) EXTMT 301 - GROUP THEORY

Answer all questions	,	Tin	ne : Three h	ours
	· · · · · · · · · · · · · · · · · · ·	, , ,		
1. State what is meant by				
• a group G;			3	
• a subaroun H of a aroun G			.e	

- (a) Let H be a non empty subset of a group G. Prove that H is a subgroup of G if only if ab⁻¹ ∈ H for all a, b ∈ H.
- (b) Let H be a non-empty subset of a group G. Prove that H is a subgroup of G if and only if HH⁻¹ = H.
- (c) Let H and K be two subgroups of a group G. Prove that HK is a subgroup of G if and only if HK = KH.
- 2. State and prove the Lagrange's theorem for a finite group.
 - (a) In a group G, H and K are different subgroups of order p, where p is a prime number. Prove that $H \cap K = \{e\}$, where e is the identity element of G.

- (b) Let G be a non-abelian group of order 10. Prove that G contains at least one element of order 5.
- (c) If every non-identity element of a group G has order 2, then show that G is abelian.
- 3. State what is meant by a *normal subgroup* of a group G.
 - (a) Let $\phi: G \longrightarrow G_1$ be a homomorphism of a group G onto a group G_1 . Prove the following:
 - i. ker $\phi = \{g \in G \mid \phi(g) = e_1\}$ is a normal subgroup of G, where e_1 is an identity element of G_1 ;
 - ii. if H is a normal subgroup of G, then $\phi(H)$ is a normal subgroup of G_1 .

- (b) Let G be a group. Prove that for any non-empty subset H of G,
 N(H) = {x ∈ G | xH = Hx} is a subgroup of G.
 For any subgroup H of G, prove the following:
 - i. H is a normal subgroup of N(H);
 - ii. N(H) is the largest subgroup of G in which H is normal;
 - iii. H is a normal subgroup of G if and only if N(H) = G.
- 4. (a) State and prove the first isomorphism theorem.
 - (b) Let H and K be two normal subgroups of a group G such that $K \subseteq H$. Prove that

i.
$$K \trianglelefteq H$$
;
ii. $\frac{H}{K} \trianglelefteq \frac{G}{K}$;
iii. $\frac{G/K}{H/K} \cong \frac{G}{H}$.

- 5. (a) Define what is meant by the p-group. Prove the following:
 - i. every subgroup of a p-group is a p-group;
 - ii. the homomorphic image of a p-group is a p-group.
 - (b) Let G' be the commutator subgroup of a group G. Prove the following:
 - i. G is abelian if and only if $G' = \{e\}$, where e is the identity element of G;
 - ii. G' is a normal subgroup of G;
 - iii. G/G' is abelian;
 - iv. if H is a normal subgroup of G then G/H is abelian if and only if $G' \subseteq H$.
- 6. (a) Define the following terms as applied to a permutation group:
 - i. cyclic of order r;
 - ii. transposition;
 - iii. signature.
 - (b) Prove that the permutation group on n symbols S_n is a finite group of order n!.

Is S_n abelian for n > 2? Justify your answer.

- (c) Prove that every permutation in S_n can be expressed as a product of disjoint cycles.
- (d) Express the permutation,

as a product of disjoint cycles. Hence or otherwise determine whether σ is even or odd.