EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
EXTERNAL DEGREE EXAMINATION IN SCIENCE - 2008/2009
THIRD YEAR SECOND SEMESTER (Feb./Apr., 2015) EXTMT 307 - CLASSICAL MECHANICS III

PROPER \& REPEAT

Answer all Questions

Time: Three hours

1. Two frames of reference S and S^{\prime} have a common origin O, and S^{\prime} rotates with an angular velocity $\underline{\omega}$ relative to S. If a moving particle P has its position vector \underline{r} relative to O at time t, show that :
(a) $\frac{d r}{d t}=\frac{\partial r}{\partial t}+\underline{\omega} \wedge \underline{r}$, and
(b) $\frac{d^{2} \underline{r}}{d t^{2}}=\frac{\partial^{2} \underline{r}}{\partial t^{2}}+2 \underline{\omega} \wedge \frac{\partial r}{\partial t}+\frac{\partial \underline{\omega}}{\partial t} \wedge \underline{r}+\underline{\omega} \wedge(\underline{\omega} \wedge \underline{r})$.

An object of mass m initially at rest is dropped to the earth's surface from a hight h above the earth's surface. Assume that the angular speed of the earth about its axis is a constant \ddot{w}. Prove that after time t the object is deflected east of the vertical by the amount

$$
\frac{1}{3} \omega g t^{3} \cos \lambda
$$

where λ is the earth's latitude.
2. (a) Define what is meant by the following terms:
i. linear momentum;
ii. angular momentum;
iii. moment of force.
(b) A solid of mass M is in the form of a tetrahedron $O X Y Z$, the edges $O X, O Y, O Z$ are mutually perpendicular, rests with $X O Y$ on a fixed smooth horizontal plane and YOZ against a smooth vertical wall. The normal to the rough face $X Y Z$ is in the direction of a unit vector \underline{n}. A heavy uniform sphere of mass m and center C rolls down the face causing the tetrahedron to acquire a velocity $-V \underline{j}$ where \underline{j} is the unit vector along $O Y$. If $\overrightarrow{O C}=\underline{r}$, then prove that

$$
(M+m) V-m \dot{\underline{r}} \cdot \underline{j}=\mathrm{constant}
$$

and that

$$
\frac{7}{5} \ddot{\underline{r}}=\underline{f}-\underline{n}(\underline{n} \cdot \underline{f})
$$

where $\underline{f}=\underline{g}+\dot{V} \underline{j}$ and \underline{g} is the acceleration of gravity.
3. With the usual notation, obtain the Euler's equations for the motion of the rigid body having a point fixed in the form:

$$
\begin{aligned}
& A \dot{\omega}_{1}-(B-C) \omega_{2} \omega_{3}=N_{1} \\
& B \dot{\omega}_{2}-(C-A) \omega_{1} \omega_{3}=N_{2} \\
& C \dot{\omega}_{3}-(A-B) \omega_{1} \omega_{2}=N_{3}
\end{aligned}
$$

A body moves about a point O under no forces. The principle moment of inertia at O being $3 A, 5 A$ and 6 A . Initially the angular velocity has components $\omega_{1}=n$, $\omega_{2}=0$ and $\omega_{3}=n$ about the corresponding principal axes. Show that at any time t,

$$
\omega_{2}=\frac{3 n}{\sqrt{5}} \tan \left(\frac{n t}{\sqrt{5}}\right)
$$

4. With the usual notations, derive Lagrange's equation for the impulsive motion from Lagrange's equations for a holonomic system in the following form

$$
\triangle\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)=S_{j}, \quad j=1,2, \ldots, n
$$

A uniform rod $A B$ of length $2 a$ and mass m has a particle of mass M attached to the end B. It is at rest on a smooth horizontal table when an impulse I is applied at A in a direction perpendicular to $A B$, and in the plane of the table. Find the initial velocities of A and B and prove that the resulting kinetic energy is

$$
\frac{2 I^{2}(m+3 M)}{m(m+4 M)}
$$

5. (a) Define the Hamiltonian function in terms of the Lagrangian function .

Show with the usual notations that the Hamiltonian equations are given by

$$
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}}, \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}} \text { and } \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}
$$

(b) Prove that if the time t does not occur in the Lagrangian function L, then the hamiltonian function H is also not involved in t.
(c) Write down the Hamiltonian, and then find the equation of motion when the particle of mass m is moving on a cartesian coordinate system.
6. (a) Define what is meant by the Poisson bracket.

Show that the Hamiltonian equations of the holonomic system may be written in the form

$$
\dot{q}_{k}=\left[q_{k}, H\right], \quad \dot{p}_{k}=\left[p_{k}, H\right]
$$

and show that for any function $f\left(q_{i}, p_{i}, t\right)$,

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+[f, H]
$$

where H is a Hamiltonian function.
(b) Show that, if f and g are constants of motion then their poisson bracket $[f, g]$ is also a constant of motion.

