



Answer all questions

Time : Two hours

281

0 6 NOV 2015

- 1. (a) Define what is meant by the greatest common divisor, gcd(a, b), of two integers a and b, not both zero.
  Find the gcd(119, 272).
  - (b) For any positive integers a, b and c prove that
    - i. lcm(a,b) gcd(a,b) = ab.
    - ii. if a and b are non negative integers then gcd(a, b) divides lcm(a, b).
    - iii. If a abd b are two odd integers. Prove that  $8|(a^2 b^2)$ .
  - (c) A man buys horses and cows for a total amount of Rs. 17,700. If a horse cost Rs. 310 and a cow cost Rs. 200 then find the number of horses and cows that can be bought.

- 2. Define what is meant by the Euler's  $\phi$  function for any non-negative integer n.
  - (a) State and prove the Euler's Theorem.
  - (b) State and prove the *Fermat Little Theorem*.
  - (c) If  $a \equiv b \pmod{m_1}$  and  $a \equiv b \pmod{m_2}$  then show that  $a \equiv b \pmod{m_1 m_2}$ , where  $gcd(m_1, m_2) = 1$ .
  - (d) State the Willson's Theorem, and use it to prove that if p is prime and  $p \equiv 1 \pmod{4}$  then  $\left[ \left( \frac{p-1}{2} \right)! \right]^2 \equiv (-1) \pmod{p}.$
- 3. Define what it means by the following terms:
  - Pseudo Prime;
  - Carmichael number.
  - (a) If  $d, n \in \mathbb{N}$  and d|n then show that  $(2^d 1)|(2^n 1)$ .
  - (b) Prove that if  $n = q_1 q_2 \dots q_k$ , where  $q_j$ 's are distinct primes that satisfy  $q_j 1$  divides (n-1) for all j, the n is Carmichael number.

(c) Show that  $6601 = 7 \times 23 \times 41$  is a Carmichael number by using

- i. the definition;
- ii. the part(b).
- (d) Show that 645 is a psedo prime to the base 2.
- 4. Define what is meant by the following:
  - an integer a belongs to the exponent h modulo m;
  - a primitive root.
  - (a) If a belongs to the exponent h modulo m, and suppose that  $a^r \equiv 1 \pmod{m}$  then proof that h divides r.
  - (b) If g is a primitive root modulo m then  $g, g^2, ..., g^{\phi(m)}$  are mutually incongruent and form reduced residue system mod m.
  - (c) If a belongs to the exponent h modulo m and gcd(k, h) = d then a<sup>k</sup> belongs to the exponent h/d modulo m.