EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE

THIRD EXAMINATION IN SCIENCE - 2008/2009
SECOND SEMESTER (Feb./Apr., 2015)
EXTMT 309 - NUMBER THEORY

1. (a) Define what is meant by the greatest common divisor, gcd (a, b), of two integers a and b, not both zero.

Find the $\operatorname{gcd}(119,272)$.
(b) For any positive integers a, b and c prove that
i. $\operatorname{lcm}(a, b) \operatorname{gcd}(a, b)=a b$.
ii. if a and b are non negative integers then $\operatorname{gcd}(a, b)$ divides $l c m(a, b)$.
iii. If a abd b are two odd integers. Prove that $8 \mid\left(a^{2}-b^{2}\right)$.
(c) A man buys horses and cows for a total amount of Rs. 17,700. If a horse cost Rs. 310 and a cow cost Rs. 200 then find the number of horses and cows that can be bought.
2. Define what is meant by the Euler's ϕ-function for any non-negative integer n.
(a) State and prove the Euler's Theorem.
(b) State and prove the Fermat Little Theorem.
(c) If $a \equiv b\left(\bmod m_{1}\right)$ and $a \equiv b\left(\bmod m_{2}\right)$ then show that $a \equiv b\left(\bmod m_{1} m_{2}\right)$, where $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$.
(d) State the Willson's Theorem, and use it to prove that if p is prime and $p \equiv 1(\bmod 4)$ then $\left[\left(\frac{p-1}{2}\right)!\right]^{2} \equiv(-1)(\bmod p)$.
3. Define what it means by the following terms:

- Pseudo Prime;
- Carmichael number.
(a) If $d, n \in \mathbb{N}$ and $d \mid n$ then show that $\left(2^{d}-1\right) \mid\left(2^{n}-1\right)$.
(b) Prove that if $n=q_{1} q_{2} \ldots q_{k}$, where q_{j} 's are distinct primes that satisfy $q_{j}-1$ divides $(n-1)$ for all j, the n is Carmichael number.
(c) Show that $6601=7 \times 23 \times 41$ is a Carmichael number by using
i. the definition;
ii. the part(b).
(d) Show that 645 is a psedo prime to the base 2.

4. Define what is meant by the following:

- an integer a belongs to the exponent h modulo m;
- a primitive root.
(a) If a belongs to the exponent h modulo m, and suppose that $a^{r} \equiv 1(\bmod m)$ then proof that h divides r.
(b) If g is a primitive root modulo m then $g, g^{2}, \ldots, g^{\phi(m)}$ are mutually incongruent and form reduced residue system $\bmod m$.
(c) If a belongs to the exponent h modulo m and $\operatorname{gcd}(k, h)=d$ then a^{k} belongs to the exponent h / d modulo m.

