
(June 2013)
PH 104 AC THEORY

Time: 01 hour.

Answer ALL Questions

1. A pure resistor and an inductor are connected in series to a battery of e.m.f. E as shown in figure 1.

Figure 1

$\stackrel{+}{*}$

When the key K is closed, the current I start to increase. If the inductor (L) was not present, the current would rise rapidly to a maximum steady value $I_{0}=\frac{E}{R}$ According to Faraday's and Lenz's law a self-induced electromotive force $L \frac{d I}{d t}$ appears due to the inductance L which opposes the rise of the current. Show that immediately after key K is closed, the current in the circuit at time (t) is given by $I=I_{0}\left[1-\exp \left(-\frac{R}{L} t\right)\right]$.

A relay, having an inductance 5.0 H and resistance 200Ω operates with a current 1.5 mA . When the relay is switched to a dc voltage of 0.5 V ,
(a) how long will the relay take to operate?
(b) what will be the rate of increase of current at the instant of operation?
2. If a sinusoidal alternating voltage signal having amplitude V_{0} and angular frequency ω is represented by $V=V_{0} \exp (j \omega t)$, then find the complex impedance of a pure resistor, capacitor and inductor when they are individually connected to the voltage $V=V_{0} \exp (j \omega t)$.

A series LCR circuit is connected to an alternating voltage as shown in figure 2. Find expressions for the current through the circuit and the voltage across the inductor.

Figure 2
A coil having inductance of 460 mH and resistance of 48Ω is connected in series with a capacitor having capacitance $9 \mu \mathrm{~F}$ and a r.m.s. voltage of 120 V is supplied to the circuit. What should be the frequency of the supplied voltage to obtain maximum current in the circuit? What is the voltage across the inductor under these conditions?

