EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE -2010/2011 SECOND SEMESTER (June, 2013) PM 102 - REAL ANALYSIS (PROPER & REPEAT)

Answer all Questions

Time: Three hours

- 1. (a) i. Define the following terms of a non-empty subset of \mathbb{R} :
 - bounded above;
 - bounded below;
 - Supremum;
 - Infimum.
 - ii. State the completeness property of \mathbb{R} .
 - (b) Find the supremum, infimum, maximum and minimum of the following subsetsof R, or indicate where they do not exist:
 - i. $[2,7) \setminus (2,4];$ ii. $\left\{ \frac{\sqrt{n}}{1+n} : n \in \mathbb{N} \right\};$ iii. $\left\{ \frac{1}{2^m} + \frac{1}{3^n} : m, n \in \mathbb{N} \right\}.$
 - (c) Show that $\sqrt{3} \sqrt{2}$ is not a rational number.
 - (d) State the Mathematical induction principle and use it to prove that

$$1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1) \quad \forall n \in \mathbb{N}.$$

2. (a) Define the following terms:

i. a sub sequence of a sequence;

ii. Cauchy sequence.

- (b) State the Bolzano-Weierstrass theorem and use it to prove that a sequence of real numbers is Cauchy if and only if it is convergent.
- (c) i. Show that the sequence (x_n) given by x_n = ∑_{i=1}ⁿ 1/i is not convergent.
 ii. Let (x_n) be a sequence of real numbers given by

$$x_1 = \frac{1}{1!}, \quad x_2 = \frac{1}{1!} - \frac{1}{2!}, \cdots, x_n = \frac{1}{1!} - \frac{1}{2!} + \cdots + \frac{(-1)^{n+1}}{n!}, \cdots$$

Prove that (x_n) is convergent.

3. (a) Give the formal definition of the notion of a sequence of real numbers (x_n) converging to a limit l.

Use this definition of limit of a sequence to establish the following limits:

* 1.

i.
$$\lim_{n \to \infty} \frac{3n+1}{2n+5} = \frac{3}{2};$$

ii. $\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 + 3} = \frac{1}{2}.$

(b) State the monotone convergence theorem.

Let (x_n) be a sequence of real numbers defined inductively by

$$x_1 = 4, \quad x_{n+1} = \frac{1}{10}(x_n^2 + 21), \quad n \in \mathbb{N}.$$

Show that

i. $3 < x_n < 7$ for all $n \in \mathbb{N}$.

ii. (x_n) is a decreasing sequence.

Use the monotone convergence theorem to show that (x_n) is convergent and find its limit.

- 4. (a) Let $f : \mathbb{R} \to \mathbb{R}$ be a function. What is meant by the function f_2 has a limit $l \in \mathbb{R}$ at a point $a' (\in \mathbb{R})$. Show that
 - $\lim_{x \to 2} \frac{x^3 4}{x^2 + 1} = \frac{4}{5}.$
 - (b) Let f : R → R be a function. Show that lim f(x) = l if and only if for every sequence (x_n) that converges to 'a' such that x_n ≠ a for all n ∈ N, the sequence (f(x_n)) converges to l.
 Show that lim sin (1/x) does not exist.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be two functions.
 - (a) State what is meant by the statement that f is differentiable at the point $a \in \mathbb{R}$.

Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 2x^2 + 3x$ is differentiable at x = 2 and find the derivative of f at x = 2.

- (b) Show that if f is differentiable at x = a then f is continuous at x = a.
- (c) Let f and g be differentiable at x = a. Show that $(f \cdot g)$ is differentiable at x = a and $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a)g'(a)$.
- (d) If f is differentiable at 'a' and g is differentiable at 'f(a)' then show that the composition function $g \circ f$ is differentiable at 'a' and $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$.
- 6. (a) State the Intermediate value theorem for a continuous function $f : [a, b] \to \mathbb{R}$ defined on a closed interval [a, b], where $a, b \in \mathbb{R}$ with a < b.
 - (b) Let f : [a,b] → ℝ be a function with a, b ∈ ℝ and a < b. Suppose that f is continuous on [a, b] and that f is differentiable on (a, b). Show that there exists c ∈ (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

(You may use the Rolle's Theorem without proving it.)

- (c) Let $f:[0,1]\to \mathbb{R}$ be a function. Suppose that
 - f is continuous on [0, 1];
 - f is differentiable on (0, 1); and
 - there exists $x \in (0,1)$ such that $f(x) \neq x$.

Prove the following:

- i. There exists $a \in (0, 1)$ such that $f(a) = \frac{1}{2}$.
- ii. There exists $b \in (0, 1)$ such that f'(b) = 1.
- iii. There exists $c \in (0, 1)$ such that f'(c) > 1.
- (d) Let $f : \mathbb{R} \to \mathbb{R}$ be a function. If f is continuous on [a, b], differentiable on (a, b)and f'(x) = 0 for all $x \in [a, b]$, prove that f is a constant function on [a, b].