EASTERN UNIVERSITY, SRI LANKA FIRST EXAMINATION IN SCIENCE - 2016/2017

SECOND SEMESTER (March, 2019)
PM 102 - REAL ANALYSIS

Q1. (a) i. Define the terms 'Supremum' and 'Infimum' of a non-empty subset of \mathbb{R}.
ii. State the completeness property of \mathbb{R}, and use it to prove that every nonempty bounded below subset of \mathbb{R} has an Infimum.
(b) Prove that an upper bound u of a non-empty bounded above subset S of \mathbb{R} is the Supremum of S if and only if for every $\epsilon>0$, there exist an $x \in S$ such that $x>u-\epsilon$.
(c) Find the Supremum and Infimum of the set

$$
S=\left\{\frac{2}{3}\left(1-\frac{1}{10^{n}}\right): n \in \mathbb{N}\right\}
$$

Q2. (a) State what is meant by a sequence of real numbers $\left(x_{n}\right)$ converges to a limit a.
(b) Prove that every convergent sequence of real numbers is bounded.
(c) State the Monotone Convergent Theorem.

Let $x_{1}=1$ and $x_{n+1}=\frac{1}{4}\left(2 x_{n}+3\right)$ for all $n \in \mathbb{N}$.
i. Show that $\left(x_{n}\right)$ is strictly increasing sequence.
ii. Show that $x_{n} \leq 2$ for all $n \in \mathbb{N}$.
iii. Does the sequence converge at all? Justify your answer.

Q3. (a) Define the following terms:
i. a subsequence of a sequence;
ii. Cauchy sequence.
(b) State and prove the Bozano-Weierstrass Theorem.
(c) Prove that a sequence $\left(x_{n}\right)$ of real numbers is Cauchy if and only if it is co vergent.
(d) Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two Cauchy sequences and $c_{n}=\left|a_{n}-b_{n}\right|$. Show that (c_{1} is a Cauchy sequence.

Q4. (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Explain what is meant by the function f has limit $l(\in \mathbb{R})$ at a point $a(\in \mathbb{R})$.
(b) If $\lim _{x \rightarrow a} f(x)=l$, then show that $\lim _{x \rightarrow a}|f(x)|=|l|$. Is the converse true? Justif your answer.
(c) Let f, g, and h be three real-valued functions definedon $A \subseteq \mathbb{R}$. Assume thr for all $x \in A$, we have

$$
f(x) \leq g(x) \leq h(x)
$$

and that for $x_{0} \in A$ we have $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} h(x)=\%$. Prove' that

$$
\lim _{x \rightarrow x_{0}} g(x)=l
$$

Hence show that $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)=0$.

Q5. (a) Define what it means to say that a real-valued function f is continuous at a point ' a ' in its domain.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that

$$
f(x)=\left\{\begin{array}{lll}
\frac{\sin x}{x} & \text { if } & x \neq 0 \\
1 & \text { if } & x=0
\end{array}\right.
$$

Prove that, f is continuous at $x=0$.
(b) Prove that if a function $f:[a, b] \longrightarrow \mathbb{R}$ is continuous on $[a, b]$, then it is bounded on $[a, b]$.
(c) State the Intermediate Value Theorem and use it to show that the equation $2 x^{2}(x+2)-1=0$ has a root in each of the intervals $(-2,-1),(-1,0)$ and $(0,1)$.

Q6. (a) i. Define what it means to say that the real-valued function f is differentiable at a point ' a ' in its domain.
ii. Prove that every differentiable function is continuous. Is the converse true? Justify your answer.
(b) State the Mean-Value Theorem and use it to prove

$$
x<\sin ^{-1} x<\frac{x}{\sqrt{1-x^{2}}}, \quad \forall x \in(0,1)
$$

(c) Suppose that f and g are continuous on $[a, b]$ differentiable on (a, b) and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Prove that there existis $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

