EASTERN UNIVERSITY, SRI,LANKA

DEPARTMENT OF MATHEMATICS
FIRST EXAMINATION IN SCIENCE - 2010 E20It
SECOND SEMESTER (June, 2013)
PM 107 - THEORY OF SERIES
(PROPER \& REPEAT)

Answer all Questions
Time: Two hours

1. (a) State the necessary and sufficient condition for the convergence of a series of positive real numbers $\sum_{n=1}^{\infty} u_{n}$.
(b) If $\lambda>1$, prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^{\lambda}}$ is convergent. [25 marks]
(c) State the integral test for the series of non-negative teams.

Hence show that the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$ is convergent if $p>1$ and divergent if $0<p \leq 1$.
(d) Test the convergence of the following series:
ii. $\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{2}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\cdots, \quad$ [30 marks]
(You may state the convergence tests without prove)
2. (a) Define the following
i. absolutely convergent series;
ii. conditionally convergent series.
[10 marks]
(b) If $\sum_{n=1}^{\infty} u_{n}$ is an absolutely convergent series then prove that the series of its positive terms and the series of its negative terms are both convergent.
(c) Prove that every re-arrangement of an absolutely convergent series is convergent and the sum also does not change.

Is it true that the re-arrangement of an conditionally convergent series has the same sum? Justify your answer.
(d) State the Leibnitz's theorem for an infinite series of real numbers.

Hence show that the series

$$
x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots,
$$

converges only if $-1 \leq x \leq 1$.
3. (a) State the Cauchy's general principle of convergence for series.

Hence show that the series $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$ does not converge. [15 marks]
(b) State Abel's theorem for an infinite series of real numbers. [10 marks]

Use the above theorem to test the convergence of the series

$$
\sum_{n=2}^{\infty} \frac{\left(n^{3}+1\right)^{\frac{1}{3}}-n}{\ln n}
$$

\because
[15 marks]
(c) i. Show that

$$
\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \quad \text { for } \quad|x|<1
$$

ii. Use the result in part(i), and the Abel's theorem for the power series to show that

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots
$$

4. (a) Define what is meant by the convergent of an infinite series of complex numbers $\sum_{n=1}^{\infty} z_{n}$.
(b) Show that the geometric series, $1+z+z^{2}+z^{3}+\cdots$, has the sund vivz wh $|z|<1$.
Hence find the sum of the series $\sum_{n=0}^{\infty}(n+1) z^{n}$.
[25 marks]
(c) If $\sum_{n=1}^{\infty} z_{n}$ is an infinite series of complex numbers such that $\lim _{n \rightarrow \infty} \sqrt[n]{\left|z_{n}\right|}=l$, then prove that, if $l<1$, the series converges absolutely and if $l>1$, the series diverges.
Hence check whether the series $\sum_{n=0}^{\infty}\left(\frac{1}{2+i}\right)^{n}$ converges or diverges.
[35 marks]
(d) Show that the infinite series

$$
\begin{gathered}
1+\frac{z}{1+z}+\frac{z^{2}}{(1+z)^{2}}+\cdots \\
\text { converges for } z \in E \text {, where } E=\left\{z \in \mathbb{C} ; \operatorname{Re}(z)>-\frac{1}{2}\right\}
\end{gathered}
$$

Hence find its sum.

