EASTERN UNIVERSITY, SRI LANKA
 THIRD EXAMINATION IN SCIENCE -2011/2012
 FIRST SEMESTER (Apr. /May, 2017)
 EXTCS 301 - COMPUTER GRAPHICS
 (Special Repeat)

i) Define in your own words what a Computer Graphics is.
ii) Define the following terms:
a) World co-ordinates;
b) Device co-ordinates.
iii) Derive the necessary equations to generate Digital Differential Analyzer (DDA) Algorithm to the following case:

Here the slope m is greater than one $(m>1)$.
iv) Consider the Midpoint circle algorithm:
a) Derive the necessary equations to generate Midpoint circle algorithm.
b) Write the Midpoint circle algorithm.
c) Get all the pixel co-ordinates to draw a circle of radius $r=3$ with center $(2,2)$. (Apply this algorithm)
Plot all the pixel co-ordinates to draw this complete circle.
i) Give the corresponding matrices (in homogeneous system) for each of the following 3) D transformations in computer graphics:
a) Rotation about origin;
b) Translation;
c) Scaling about pivot point;
d) Shearing in y-direction.
ii) Consider the square shown below as Figure-A.

Figure- A
a) Rotate the above object in Figure- A by 60° in clockwise direction and then trans the resultant object with $t_{x}=3$ and $t_{y}=-5$. Write down the steps and correspond transformation matrices clearly.

Figure-B from Figure - A;
b) Compute the new co-ordinates of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D using the resultant transformai matrix.
i) Define the following terms:
a) Window;
b) View port.
ii) Briefly explain the Cohen-Sutherland line clipping algorithm.
iii) Let W be a window whose bottom-left corner is $(100,100)$ and the top right corner is $(300,200)$ and $A B$ be a straight line with $A=(50,150)$ and $B=(120,200)$. Apply the above algorithm to clip AB against window W .
i) Give the equation for three Dimensional (3D) rotations about y axis by an angle α.
ii) Write down the Reflection matrices for the followings:
a) Reflection about x - axis.
b) Reflection about y-axis.
c) Reflection about an axis perpendicular to the xy plane.
iii) Reflect the diamond shape polygon whose vertices are $\mathrm{A}(-1,0), \mathrm{B}(0,-2), \mathrm{C}(1,0)$ and $D(0,2)$ about the horizontal line $y=3$.

