

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS EXTERNAL DEGREE EXAMINATION IN SCIENCE (2010/2011) THIRD YEAR FIRST SEMESTER (Apr./ May, 2017) EXTMT 302 - COMPLEX ANALYSIS Special Repeat

Answer all questions

Time: Three hours

- (a) Let A ⊆ C be an open set and let f : A → C. Define what is meant by f being analytic at z₀ ∈ A.
 - (b) Let the function f(z) = u(x, y) + iv(x, y) be defined throughout some ϵ -neighborhood of a point $z_0 = x_0 + iy_0$. Suppose that the first order partial derivatives of the functions u and v with respect to x and y exist everywhere in that neighborhood and that they are continuous at (x_0, y_0) . Prove that, if those partial derivatives satisfy the **Cauchy-Riemann** equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

at $z_0 = x_0 + iy_0$, then the derivative $f'(z_0)$ exists.

(c) Define what is meant by the function $h : \mathbb{R}^2 \to \mathbb{R}$ being harmonic.

Find the harmonic conjugate of $y^3 - 3x^2y$.

(a) i. Define what is meant by a path $\gamma : [\alpha, \beta] \to \mathbb{C}$.

ii. For a path γ and a continuous function $f: \gamma \to \mathbb{C}$, define $\int_{-\infty}^{\infty} f(z) dz$.

(b) Let $a \in \mathbb{C}$, r > 0, and $n \in \mathbb{Z}$. Show that

2.

$$\int_{C(a;r)} (z-a)^n \, dz = \begin{cases} 0 & \text{if } n \neq -1 \\ 2\pi i & \text{if } n = -1, \end{cases}$$

where C(a; r) denotes a positively oriented circle with center a and radius r. (State but **do not prove** any results you may assume).

(c) State the Cauchy's Integral Formula.

By using the Cauchy's Integral Formula compute the following integrals:

i.
$$\int_{C(0;2)} \frac{z}{(9-z^2)(z+i)} dz;$$

ii.
$$\int_{C(0;1)} \frac{1}{(z-a)^k (z-b)} dz, \text{ where } k \in \mathbb{Z} \ |a| > 1 \text{ and } b < 1.$$

3. (a) State the Mean Value Property for Analytic Functions.

(b) i. Define what is meant by the function $f : \mathbb{C} \to \mathbb{C}$ being entire.

ii. Prove Liouville's Theorem: If f is entire and

$$\frac{\max\{|f(t)|:|t|=r\}}{r} \to 0, \text{ as } r \to \infty,$$

then f is constant.

(State any result you use without proof).

iii. Prove the Maximum-Modulus Theorem: Let f be analytic in an open nected set A. Let γ be a simple closed path that is contained, together wi inside, in A. Let

$$M := \sup_{z \in \gamma} |f(z)|.$$

If there exists z_0 inside γ such that |f(z)| = M, then f is constant through A. Consequently, if f is not constant in A, then

$$|f(z)| < M, \quad \forall z_0 \text{ inside } \gamma.$$

(State any result you use without proof)

- (a) Let $\delta > 0$ and let $f : D^*(z_0; \delta) \to \mathbb{C}$, where $D^*(z_0; \delta) := \{z : 0 < |z z_0| < \delta\}$. Define what is meant by
 - i. f having a singularity at z_0 ;
 - ii. the order of f at z_0 ;
 - iii. f having a pole or zero at z_0 of order m;
 - iv. f having a simple pole or simple zero at z_0 .
- (b) Prove that $ord(f, z_0) = m$ if and only if

$$f(z) = (z - z_0)^m g(z), \quad \forall z \in D^*(z_0; \delta),$$

for some $\delta > 0$, where g is analytic in $D^*(z_0; \delta) := \{z : 0 < |z - z_0| < \delta\}$ and $g(z_0) \neq 0$.

(c) Prove that if f has a simple pole at z_0 , then

$$Res(f; z_0) = \lim_{z \to z_0} (z - z_0) f(z_0),$$

where $Res(f; z_0)$ denotes the residue of f(z) at $z = z_0$.

(a) Let f be a analytic in the upper-half plane $\{z : Im(z) \ge 0\}$, except at finitely many points, none on the real axis. Suppose there exist M, R > 0 and $\alpha > 1$ such that

$$|f(z)| \leq \frac{M}{|z|^{\alpha}}, \quad |z| \ge R \quad \text{with} \quad \text{Im}(z) \ge 0.$$

Then prove that

$$I := \int_{-\infty}^{\infty} f(x) \ dx$$

converges (exists) and

 $I = 2\pi i \times \text{Sum of Residues of } f$ in the upper half plane.

Hence evaluate the integral

$$\int_{-\infty}^{\infty} \frac{\sin x}{1+x^2} \, dx.$$

(You may assume without proof the Residue Theorem)

- 6. (a) State the Principle of Argument Theorem.
 - (b) Prove Rouche's Theorem: Let γ be a simple closed path in an open starse Suppose that
 - i. f, g are analytic in A except for finitely many poles, none lying on γ .
 - ii. f and f + g have finitely many zeros in A.
 - iii. $|g(z)| < |f(z)|, z \in \gamma$. Then

$$ZP(f + q; \gamma) = ZP(f; \gamma)$$

where $ZP(f+g;\gamma)$ and $ZP(f;\gamma)$ denotes the number of zeros - number of f inside γ of f + g and f respectively, where each is counted as many times z order.

(c) State the Fundamental Theorem of Algebra.