EASTERN UNIVERSITY, SRI LANKA

 SPECIAL DEGREE EXAMINATION IN CHEMISTRY

 SPECIAL DEGREE EXAMINATION IN CHEMISTRY FOURTH YEAR FIRST SEMESTER-2009/2010
 (FEB/MARCH' 2014)

CHS07 Physical Chemistry II

Answer all questions
Time: 02 hours
You may find the following information useful

$$
\begin{aligned}
& \text { Velocity of light }(\mathrm{c})=2.99 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& \text { Plank's constant }(\mathrm{h})=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& \text { Boltzmann constant }(\mathrm{k})=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& \text { Gas constant }\left(\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}\right)=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \text { Avogadro constant }\left(\mathrm{N}_{\mathrm{A}}\right)=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& \text { Electron mass }(\mathrm{me})=9.1 \times 10^{-31} \mathrm{~kg}
\end{aligned}
$$

1) a) The reaction $\mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{I}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+3 \mathrm{I}^{-}+2 \mathrm{H}^{+}$takes place in aqueous solution through the following step.

$$
\begin{align*}
& \mathrm{H}_{3} \mathrm{AsO}_{3} \rightleftharpoons \mathrm{H}_{2} \mathrm{AsO}_{3}^{-}+\mathrm{H}^{+} \tag{i}\\
& \mathrm{H}_{2} \mathrm{O}+I_{3}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{OI}^{+}+2 \mathrm{I}^{-} \tag{ii}\\
& \mathrm{H}_{2} \mathrm{AsO}_{3}^{-}+\mathrm{H}_{2} \mathrm{OI}^{+} \rightleftharpoons \mathrm{H}_{2} \mathrm{AsO}_{3} \mathrm{I}+\mathrm{H}_{2} \mathrm{O} \tag{iii}\\
& \mathrm{H}_{2} \mathrm{AsO}_{3} \mathrm{I}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}^{+}+\mathrm{I}^{-} \tag{iv}
\end{align*}
$$

The rate constants for the reactions (i), (ii), and (iii) are k_{1}, k_{2}, and k_{3} respectively and k_{4} is the rate constant for the rate determining step (iv). Show that the rate of the reaction is given by $\frac{K^{\prime}\left[H_{3} A_{s} O_{3}\right]\left[I_{a}^{\prime}\right]}{[I]^{2}\left[H^{+}\right]}$and find the constant K^{t}.
[40 marks]
b) i) Starting with Arrhenius equation show that the activation energy, E, of a reaction is given by the equation,

$$
E=\frac{R T^{2}}{K} \frac{d K}{d T}
$$

[10 marks]
ii) By integrating, show that $\ln \frac{K_{2}}{K_{1}}=\frac{E}{R}\left(\frac{T_{2}-T_{i}}{T_{1} T_{z}}\right) \quad\left[\right.$ use $\left.\frac{d(\ln K)}{d K}=\frac{1}{K}\right]$
c) i) Explain the term 'Quantum efficiency' with reference to photochemical reactions:
[05 marl
ii) The reaction $X \rightarrow 2 Y+Z$ takes place with absorption of light of wavelength 430 nm . Wl a certain amount of X was exposed to this light, 1.602 mmol of Z was formed. If 4.8 x 1 photons were absorbed in this process, calculate the quantum efficiency.
[20 mar
iii) In another experiment 139 kJ of photon energy was absorbed. Calculate the number moles of Y formed?

Answer two of the following parts (a), (b) and (c).

Part (a)

i) Assuming that the arrangement of ions around a central ion obeys Boltzmann distribution law, show that the charge density $\boldsymbol{\rho}_{\boldsymbol{r}}$ at a distance \boldsymbol{r} from the central ion where the potential is $\boldsymbol{\psi}_{\boldsymbol{r}}$ is given by the equation,

$$
\rho_{r}=-\frac{1}{k T} \sum N_{i}^{0} z_{i}^{2} e^{2} \psi_{r}
$$

ii) In a spherically symmetric field, the Poisson equation can be written as,

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \psi_{r}}{d r}\right)=-\frac{\rho_{r}}{\varepsilon_{0} \varepsilon_{r}}
$$

Show that the solution to ψ_{r} takes the form,

$$
\psi_{r}=A \frac{e^{-k r}}{r}
$$

iii) Assuming,

$$
A=\frac{z_{i} e}{4 \pi \varepsilon_{0} \varepsilon_{p}} \frac{e^{\kappa a}}{1+\kappa a}
$$

Derive an expression for the potential on the central ion due to its ionic atmosphere.

Part (b)

The reaction $\boldsymbol{O x}+\boldsymbol{n e} \rightleftharpoons$ Red takes place at an electrode through the simplest mechanism. The forward rate constant is $\boldsymbol{k}_{\boldsymbol{f}}$ and the reverse rate constant is $\boldsymbol{k}_{\boldsymbol{r}}$.
i) Using the reaction profile and Arrhenius equation derive equations giving the relationships between $\boldsymbol{k}_{\boldsymbol{f}}$ and the electrode potential and $\boldsymbol{k}_{\boldsymbol{r}}$ and the electrode potential.
ii) Hence, derive an equation relating the current (\boldsymbol{i}), electrode potential (\boldsymbol{E}) and the surface concentrations of the electroactive species.
iii) Show that the exchange current $\left(\boldsymbol{i}_{0}\right)$ which flows in both directions under equilibrium conditions is given by the equation,

$$
i_{0}=n F A k^{0}[O x]_{0}^{(1-a)}[\operatorname{Red}]_{0}^{\alpha}
$$

where the symbols have their usual meanings.
iv) Hence derive the current over potential equation,

$$
i=i_{0}\left\{\frac{[O x]}{[O x]_{0}} e^{-a n F \eta / R T}-\frac{[\text { Red }]}{[R e d]_{0}} e^{(1-a) n F \eta / R T}\right\}
$$

[50 marks]

Part (c)

Consider the cell $\mathrm{Pt}^{\prime} / \mathrm{Ag}_{(\mathrm{s})} / \mathrm{AgCl}_{(\mathrm{s})} / \mathrm{KCl}, \mathrm{H}_{2} \mathrm{O} / \mathrm{Hg} / \mathrm{Pt}^{\prime \prime}$. Starting with the equation

- $\boldsymbol{d}_{\gamma}=\Sigma \Gamma_{i} d \bar{\mu}_{i}$ derive the electrocapillary equation,

$$
-d Y=\Gamma_{H_{2} O} d \mu_{H_{2} O}^{s}+\Gamma_{K^{+}} d \mu_{K C I}^{s}+q_{M} d V
$$

(The symbols have their usual meanings.)
Using the Gibbs-Duhem equation, $\sum x_{i} d_{\mu} \varepsilon_{i}=\mathbf{0}$ derive the equation

$$
q_{M}=-\left(\frac{\partial \gamma}{\partial V}\right)_{T, p, \mu}
$$

3) Answer all parts (a) and (b).

Part (a)

i) Explain how short-range lateral repulsive interactions between adsorbate atoms can lead to well-ordered structures in the adsorbate layer.
ii) What is the effect of attractive lateral interactions at low values of adsorbate coverage?
iii) In the limit of very strong nearest-neighbour repulsive lateral interactions, determine the closet distance between adsorbate atoms on the $\mathrm{Ni}\{100\}$ surface of saturation coverage. Give a sketch of this monolayer adsorbate structure relative to the underlying unreconstructed metal surface, and give the Wood's notation for the structure.

Part (b)

The above figure shows adsorption geometry of O on $\mathrm{Pt}\{100\}$. Write down the Wood notation and the matrix notation.

Derive an expression for the number of collisions taking place between two ideal molecule A and B in unit volume in unit time in terms of concentrations A, B and m relative speed of an ideal gas molecule.
ii) Calculate the frequency factor, A, for the elementary reaction $\mathrm{NO}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}+$ assuming that the molecular radii of $N O$ and \boldsymbol{O}_{2} are 140 pm and 200 pm respectively.
[20 mar
iii) If the experimental value of A for this reaction is $8 \times 10^{11} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. Calculate the sti factor and comment on this value.

Explain the following terms in catalysis
i) Promoters
ii) Poisons

