## Eastern University, Sri Lanka Department of Mathematics

## Special Degree Examination in Computer Science $27013 / 2014$ <br> CSS406: Parallel Computing

Answer ALL questions. (This paper has 6 questions on 6 pages.)

- Time allowed: Three Hours.
- Start a new page for each question.

Allocate your time wisely, the point value of each part shown in square brackets.

Efficient mechanisms for routing a message to its destination are critical to the performance of parallel system.
(a) One commonly used routing technique in a hypercube is called $E$-cube routing. Explain clearly, how the E-cube routing mechanism sends a message from 1000 to 0101 in a four-dimensional hypercube.
(b) The omega network is an interconnection network composed of $\log p$ stages, which connects $p$ processing nodes to $p$ memory banks.
i. At each stage of an omega network, a perfect shuffle interconnection pattern feeds into a set of $p / 2$ switches or switching nodes.
(a) Each switch has two connection modes: straight-through and cross-over. Illustrate these two modes.
(B) Sketch a schematic diagram of an omega network with four processing nodes and four memory banks.
ii. Consider the omega network with four processing nodes and four memory banks. Explain clearly, how the routing mechanism determines the route from the source $10_{2}$ to the destination $11_{2}$.
iii. By considering a suitable example, show that the omega network is a blocking network.
2. An abstraction used to express the dependencies among tasks and their rela execution is known as a task-dependency graph.
The following table shows a relational database of students' details:

| ID | CD | Class | Year | Med |
| :---: | :---: | :---: | :---: | :---: |
| S1001 | 3 | 1st | 2011 | Eng |
| S1002 | 4 | 2nd-Up | 2012 | Tam |
| S1003 | 3 | 2nd-Low | 2010 | Eng |
| S1004 | 4 | 1st | 2012 | Eng |
| S1005 | 4 | 2nd-Low | 2012 | Sin |
| S1006 | 4 | 2nd-Low | 2010 | Eng |
| S1007 | 3 | 2nd-Up | 2011 | Tam |
| S1008 | 3 | 1st | 2011 | Sin |
| S1009 | 4 | 1st | 2012 | Eng |
| S1010 | 3 | 2nd-Up | 2012 | Eng |

Where,
ID - Students' ID number
CD - Duration of the course
Med - Medium

Consider the following query for the above given relational database:

```
(Med=Eng) AND (CD=4) AND ( (Class=1st) OR (Class=2nd-U
```

(a) i. For this query, construct the most efficient task dependency grap
ii. Determine the maximum degree of concurrency and the average currency for your graph obtained in part (a.i).
iii. Without considering the average degree of concurrency, prove (obtained in part (a.i)) is the most efficient one.
(b) Propose an efficient process-task mapping for your graph obtaine Explain your mapping clearly.
(a) Define what is meant by a cost-optimal system for a problem, and deduce that a cost-optimal parallel system has an efficiency of $\theta(1)$.
(b) State clearly, what is meant by scalablity of a parallel algorithm.
(c) Consider a problem of finding minimum among the list of $n$ numbers $\left(a_{0}, a_{1}, \ldots a_{n-1}\right)$, using $p$ processing elements.
The figure shown below illustrates a procedure for finding the minimum in the list of 8 numbers using 8 processing elements in three steps. The minimum is determined by propagating partial solutions up a logical binary tree of processing elements.

The processing elements are labelled $p_{0}, p_{1}, \ldots p_{7}$, each processing element is initially assigned one of the numbers, $\min (i, j)$ denotes the minimum of numbers $\left(a_{i}, a_{i+1}, \ldots a_{j}\right)$.

i. Determine the parallel runtime $T_{P}$.
ii. Suppose the serial runtime is $\theta(n)$, show that the above method is not cost optimal.
iii. Devise a cost optimal method to find the minimum of $n$ numbers on $p$ processing elements such that $p<n$, and show that your method is cost optimal. Discuss the scalablity of the method.
4. (a) All-to-all broadcast is used in several important parallel algorithms.
i. Clearly illustrate, how the all-to-all broadcast can be performed on hypercube.
ii. Give an algorithm for implementing all-to-all broadcast on a d-di percube.
(b) Consider a $d$-dimensional $p$-node hypercube with one number on each $n$ node $P_{i}$ holds the number $n_{i}$.
The task is to find an identical pair of values by all the $p$ nodes, such $t$ will be the sum of numbers from each $(d-1)$-dimensional sub-hypercul That is, every node $P_{i}$ will have an identical pair

$$
\left[\text { sum_of }\left\{n_{0}, n_{1}, \ldots, n_{p / 2-1}\right\} \text {, sum_of }\left\{n_{p / 2}, n_{p / 2+1}, \ldots, n_{p-1}\right\}\right. \text {. }
$$

For example,


Construct a parallel algorithm to perform the above mentioned task Hint: Carefully observe the communication pattern illustrated in part ify the algorithm obtained in part (a.ii).
(a) A message exchanging problem is shown below:

```
P0 P1
send(&a, 1, 1);
receive(&b, I, 1);
```

$\operatorname{send}(\& a, 1,0)$;
receive(\&b, 1, 0);

If the send and receive operations are implemented using a blocking non-buffered protocol, there is a possibility for a deadlock. Explain clearly, how bufferes can be used to avoid this problem.
(b) Consider the following code segment:

```
void CS (long int stop) [
I/ Assume that "stop \({ }^{*}\) is a mon negative integer
    int rank, np;
    long int buffer \(=0\), result \(=0\);
    MPI_Commsize (MPI_COMM-WORLD, \&np);
    MPI_Comm_rank (MPI_COMM WORLD, srank):
    for (long int \(i=x a n k ; i<=s t o p ; i+=n p)(\)
        buffer += i;
    1
    printf("Process sa: \&ld\n": rank, buffer):
    MPI Reduce (\&buffer, Eresult, 1, MPI LONG, MPI_SUM, 0, MPI_COMM_WORLD) ;
    if (rank \(==0\) ) printf("\n Result is : कIdyn";result);
```

i. If the number of processes in "MPI_COMM_WORLD" is 3, trace out the final result for the function call CS (5). State the purpose of this code.
ii. Modify this code to calculate the sum of any range of consecutive natural numbers from a "start" number to a "stop" number.
For example, if "start $=5$ " and "stop $=12$ ", then

$$
\text { result }=\text { sum_of }\{5,6,7,8,9,10,11,12\}
$$

6. (a) Consider the following code segment:
8
9 //assume that the "root" has a matrix "A" of size $r^{*} c$, and $r$ is divisible 1 where ( $r=$ number of rows) and $(c=$ number of columns)

Suppose the root has a vector $x$ of $r$ elements, and you want to solve the matrre problem $A x=y$. Write the remaining part of the code segment to solve the parallally by $n p$ processors, then obtain the final result $y$ in the node "root".
(b) Consider a problem in which a matrix $A$ of size $n \times n$ and a vector $x$ of $n$ d have been distributed among $p$ number of processes such that each process 8 consecutive columns of $A$ and the elements of vector $x$ that correspond to theser (see the figure below).


Assume that $n \times(n / p)$ elements of $A$ and $(n / p)$ elements of $x$ are stored ii and "local_x" respectively.
Write the remaining part of the code segment given below to solve the mat problem $A x=y$, and obtain the resultant vector $y$ entirely in $P_{0}$.

$|$| 11 | MPI_Comm_size (comm, \&npes) ; |
| :--- | :--- |
| 12 | nlocal = n/npes; |
| 13 | int local $y[\mathrm{n}] ;$ |

