EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS SPECIAL DEGREE EXAMINATION IN MATHEMATICS ACADEMIC YEAR - 2010/2011 (JUNE, 2016) MTS 10 - NUMERICAL LINEAR ALGEBRA
(a) Define the term "elementary lower-triangular matrix".

Let $A$ be an $n \times n$ matrix and $A_{r}$ be the principle sub-matrix of $A$ of order $r(r \leq n)$. Prove that if $\operatorname{det} A_{r} \neq 0$ for $r<n$, then there exists a decomposition $A=L U$, where $L$ is a product of elementary lower triangular matrices and $U$ is an upper triangular matrix.
(b) Define the term "positive definite "as applied to an $n \times n$ Hermitian matrix $A$. Prove that an Hermitian positive definite matrix A can be uniquely expressed as $A=L U$ where $L$ is a unit lower-triangular matrix and $U$ is an uppertriangular matrix.
(c) Show that an Hermitian matrix $A$ is positive definite if and only if $A=G G^{H}$ where $G$ is a non-singular lower-triangular matrix. Determine $G$ such that

$$
G G^{H}=\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 5 & 2 & -3 \\
0 & 2 & 5 & 1 \\
1 & -3 & 1 & 4
\end{array}\right]
$$

Q2. (a) Define the term "elementary Hermitian matrix".
Prove that any product of $n \times n$ elementary Hermitian matrices matrix.
b) Show that, for any real vector $x$, there is a real elementary Hermiti $H(\omega)$ such that $H(\omega) x=c e_{1}$, where $c^{2}=x^{T} x$ and $e_{1}=(1,0$ What is the optimal choice of the sign of $c$ for the computation of $u$
(c) Determine an upper triangular matrix $U$ such that $H A=U$, wh product of elementary Hermitian matrices and

$$
A=\left[\begin{array}{ccc}
1 & -3 & 2 \\
2 & 4 & -1 \\
2 & 5 & 0
\end{array}\right]
$$

making the optimal choice of sign in each stage of the process. $A x=b$ where $b=(5,0,-1)^{T}$.

Q3. (a) Define the term "spectral radius " of an $n \times n$ matrix.
Let $\rho(A)$ denote the spectral radius of an $n \times n$ matrix A. Show $\epsilon>0$, there is a matrix norm such that

$$
\rho(A) \leq\|A\|<\rho(A)+\epsilon
$$

Hence show that if $\rho(A)<1$ then $I-A$ is non singular and $\frac{1}{1-\|A\|}$ for some matrix norm.
(b) Let $A$ be a non-singular matrix and $E$ a matrix such that $\| A$ for some matrix norm subordinate to a vector norm. Let $A x=$ Suppose that $(A+E) z=r+e$, where $r=b-A y$ and $y$ vectors. Show that $x-(y+z)=(A+E)^{-1}[E(x-y)-e]$ ani

$$
\frac{\|x-(y+z)\|}{\|x\|} \leq \frac{K(A)}{1-K(A) \frac{\|E\|}{\|A\|}}\left[\frac{\|E\|}{\|A\|} \cdot \frac{\|x-y\|}{\|x\|}\right.
$$

(a) Define the term "strictly diagonally dominant" as applied to an $n \times n$ matrix A.

Prove that a strictly diagonally dominant matrix is non singular.
(b) Let $A=I-L-U$ be a strictly diagonally dominant, where $L$ is strictly lower triangular and $U$ is strictly upper triangular matrices. For arbitrary initial guess $x^{(0)}$, a sequence $\left\{x^{(r)}\right\}$ is defined by

$$
x^{(r+1)}=(I-\omega L)^{-1}\left[\omega b+((1-\omega) I+\omega U) x^{(r)}\right], \quad r=0,1,2 \ldots
$$

Show that

$$
x-x^{(r+1)}=M\left(x-x^{(r)}\right), \quad r=0,1,2 \ldots
$$

where $M=(I-\omega L)^{-1}[(1-\omega) I+\omega U]$ and $x$ is the solution of $A x=b$. If $0<\omega \leq 1$, show that the sequence $x^{(r)}$ converges to $x$.
The following equations are to be solved by Gauss-Seidel iteration (Successive Over -Relaxation with a parameter $\omega=1$ ):

$$
\begin{aligned}
4 x_{1}+x_{3}+x_{4} & =1 \\
x_{1}+4 x_{3} & =3 \\
x_{1}+x_{2}+4 x_{4} & =4 \\
4 x_{2}+x_{4} & =2
\end{aligned}
$$

Starting with $x^{(0)}=0$ and using four significant digit arithmetic, obtain $x^{(1)}$ and $x^{(2)}$.
(a) Define the term "upper Hessenberg matrix".

Let $A$ be an $n \times n$ matrix. Show that there exists a unitary matrix $S$, a product of elementary Hermitian matrices, such that $S^{H} A S$ is an upper Hessenberg matrix.
(b) Determine a tridiagonal matrix $T$ such that

$$
S T S^{H}=\left[\begin{array}{llll}
1 & 0 & 4 & 0 \\
0 & 3 & 3 & 4 \\
4 & 3 & 3 & 4 \\
0 & 4 & 4 & 3
\end{array}\right]
$$

where $S$ is a product of elementary Hermitian matrices. Choose an appropriate sign for the construction of each elementary Hermitian matrix needed.

Q6. (a) Suppose that the eigenvalue $\lambda_{1}$ of largest modulus and a correspondi vector $z_{1}$ of an $n \times n$ matrix $A$ have been computed by the Power Show that there is a non- singular matrix $S$ such that

$$
S^{-1} A S=\left[\begin{array}{ccc}
\lambda & \vdots & b^{T} \\
\cdots & \cdots & \cdots \\
0 & \vdots & B
\end{array}\right]
$$

where $B$ is an $(n-1) \times(n-1)$ matrix and $b$ is an $(n-1)$-colum
(b) Describe how the other eigenvalues and eigenvectors of $A$ could be
(c) It is given that the matrix

$$
A=\left[\begin{array}{ccc}
2 & 3 & 2 \\
10 & 3 & 4 \\
3 & 6 & 1
\end{array}\right]
$$

has an largest eigenvalue 11 with corresponding eigenvector (0) Obtain a $2 \times 2$ matrix whose eigenvalues are the other eigenvalu

