EASTERN UNIVERSITY, SRI LANKA SPECIAL DEGREE EXAMINATION IN SCIENCE - 2004/2005

Advanced Quantum Mechanics - PH 402

Answer ALL questions.

Time: 3 hours

1. (a) If the momentum and position operators in one-dimension are given by

$$\hat{p} = -i\hbar \frac{\partial}{\partial x}$$
, and $\hat{x} = x$,

find the value of the commutators $[\hat{x}, \hat{p}]$, $[\hat{x}, \hat{p}^2]$ and $[\hat{x}^2, \hat{p}]$.

Explain why it is not possible to measure simultaneously the energy and the position of a free particle.

(b) The wave function of a particle executing linear harmonic motion in the lowest eigenstate is given by

$$\psi(x) = \left(\frac{\alpha^2}{\pi}\right)^{\frac{1}{4}} e^{-\frac{\alpha^2 x^2}{2}}$$

Show that the uncertainties in position and momentum of the particle are

$$\Delta x = \frac{1}{\sqrt{2} \alpha}, \qquad \Delta p = \frac{\alpha \hbar}{\sqrt{2}},$$

such that

$$\Delta x \Delta p = \frac{h}{2}.$$

The values of the following integrals are given:

$$\int_{-\infty}^{\infty} e^{-\alpha^2 x^2} dx = \sqrt{\frac{\pi}{\alpha^2}} \quad ; \qquad \int_{-\infty}^{\infty} x^2 e^{-\alpha^2 x^2} dx = \frac{1}{2\alpha^2} \sqrt{\frac{\pi}{\alpha^2}} \; .$$

2. Particles of mass m are moving with velocity v along the positive direction in the x-axis and encounter a potential barrier defined by

V(x)	=	0	x < 0
V(x)	=	V_0	0 < x < a
V(x)	=	0	x > a

- (i) Determine the transmission coefficient T for the cases (a) $V_0 > \frac{1}{2}mv^2$ and (b) $V_0 < \frac{1}{2}mv^2$
- (ii) Show that there is a discrete set of energies for which the barrier is completely transparent and obtain an expression for these energies.
- (iii) Show that the minimum velocity v_{min} for which the barrier will be completely transparent as

$$v_{min} = \sqrt{\frac{2}{m} \left\{ V_0 + \frac{h^2}{8ma^2} \right\}}$$

3. If \$\hlowsymbol{L}_x\$, \$\hlowsymbol{L}_y\$, \$\hlowsymbol{L}_z\$ are the components of the angular momentum vector operator \$\hlowsymbol{L}\$, show that \$[\hlowsymbol{L}_x\$, \$\hlowsymbol{L}_y\$] = \$i\hbar \hlowsymbol{L}_z\$, \$[\hlowsymbol{L}_y\$, \$\hlowsymbol{L}_z\$] = \$i\hbar \hlowsymbol{L}_x\$, and \$[\hlowsymbol{L}_z\$, \$\hlowsymbol{L}_x] = \$i\hbar \hlowsymbol{L}_x\$, and \$[\hlowsymbol{L}_z\$, \$\hlowsymbol{L}_z] = \$i\hbar \hlowsymbol{L}_x\$, and \$[\hlowsymbol{L}_z\$, \$\hlowsymbol{L}_x] = \$i\hbar \hlowsymbol{L}_x\$, and \$[\hlowsymbol{L}_z\$, \$\hlowsymbol{L}_z] = \$i\hbar \hlowsymbol{L}_x\$, and \$[\hlowsymbol{L}_z\$, \$\hlowsymbol{L}_x] = \$i\hbar \hlowsymbol{L}_x\$, and \$[\hlowsymbol{L}_z\$, \$\hlowsymbol{L}_x] = \$i\hbar \hlowsymbol{L}_x\$, and \$[\hlowsymbol{L}_z\$, \$\hlowsymbol{L}_x] = \$i\hbar \hlowsymbol{L}_x\$, and \$[\hlowsymbol{L}_x\$, \$\hlowsymbol{L}_x\$, \$\hlowsymbol{L}_x\$, \$\hlowsymbol{L}_x\$, \$\hlowsymbo

If we define the ladder operates \hat{L}_+ and \hat{L}_- as $\hat{L}_\pm=\hat{L}_x\pm i\hat{L}_y$ then show that

- (i) $\hat{L}_{\pm}\hat{L}_{\mp} = \hat{L}^2 \hat{L}_z^2 \pm \hbar \hat{L}_z$
- (ii) $[\hat{L}_z, \hat{L}_{\pm}] = \pm \hbar \hat{L}_{\pm}$
- (iii) $[\hat{L}^2, \hat{L}_{\pm}] = 0$

Using the above relations show that if b is an eigen value of \hat{L}_z corresponding to an eigen function ψ , then $(b \pm \hbar)$ is also an eigen value of \hat{L}_z corresponding to the eigen function $\hat{L}_{\pm}\psi$.

4. Write down the matrix representation of L_x , L_y and L^2 for l = 1 using the relations

$$\langle l, m' | \hat{L}_z | l, m \rangle = \hbar \dot{m} \delta_{m',m}$$

$$\langle l, m' | \hat{L}_\pm | l, m \rangle = \hbar \{ l(l+1) - m(m\pm 1) \}^{\frac{1}{2}} \delta_{m',m\pm 1}$$

obtain the eigenfunctions and eigenvalues of L_x .

A particle in *p*-state is represented by the state vector

$$\Psi = \frac{1}{5} \begin{pmatrix} 4\\0\\3 \end{pmatrix}$$

Calculate the probability that a measurement of L_x will yield the value \hbar . What are the expectation values of L_x , L_y and L^2 ?

5. Write down the shrödinger equation for a hydrogen like atom in a state of zero orbital angular momentum. The normalized wave function of the ground state of a hydrogen like atom with nuclear charge Ze, has the form

$$u(r) = Aexp(-\beta r)$$

where A and β are constant and r is the distance between the electron and the nucleus. Show the following for the ground state of the atom.

2

(a)
$$A^2 = \frac{\beta^3}{\pi}$$

(b) $\beta = \frac{Z}{a_0}$, where $a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2}$
(c) the energy is $E = -Z^2E_0$, where $E_0 = \frac{m_e}{2\hbar^2} \left[\frac{e^2}{4\pi\epsilon_0}\right]$
(d) the expectation value of r is $\frac{3a_0}{2Z}$

The following information may be useful

- (i) $\int_0^\infty r^n e^{-\frac{r}{a}} dr = n! a^{n+1}$ where n is a positive integer
- (ii) $\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial^2}{\partial \phi^2} \right)$

6. Outline the perturbation theory applicable for the stationary state problems and deduce expressions for the first order perturbation corrections when the energy levels of the unperturbed state are nondegenerate.

Consider a particle of mass m bound by the simple harmonic oscillator potential $V(x) = \frac{1}{2}m\omega^2 x^2$ is in its ground state. A weak perturbation $V_1(x) = Cx^4$ is now adds to this potential. Calculate the first order shift for the ground state wave function for this simple harmonic oscillator given by

$$\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} exp\left(-\frac{m\omega x^2}{2\hbar}\right)$$

You may assume that

$$\int_{-\infty}^{\infty} x^4 exp(-\alpha x^2) dx = \frac{3}{4} \sqrt{\frac{\pi}{\alpha^5}}$$