PECIAL DEGREE EXAMINATION IN SCIENCE - 2010/2011

(SEPTEMBER/OCTOBER - 2016)

PH 407 ADVANCED ELECTRONICS

$$
27 \text { OCT } 2017
$$

e: 03 hour
wer ALL Questions

Fig. 1 shows a simple common-source amplifier circuit based on a junction field effect transistor(JFET).

Fig. 1
(i) The voltage V_{GS} between the gate and the source is -2 V . Calculate,
(a) the drain current I_{D} and
(b) the volatge $V_{D S}$ across the drain and the source.
(ii) The small-signal equivalent circuit model for the transistor used is given below.

Here, all the symbols have their usual meanings.
(a) Draw a small-signal equivalent circuit model for the amplifier in Fig
(b) The transistor used in this amplifier has a maximum saturation curre of 12 mA and a pinch off voltage V_{P} of -4 V and the ac drain resist is $12 \mathrm{k} \Omega$. Estimate the small-signal transconductance g_{m} of the trans
(c) Determine the voltage gain of the amplifier.

You may assume that the capacitors used in this circuit have zero impedance at the operation frequency.

Q2. Explain clearly what is meant by the common-mode rejection ratio (CM difference amplifier.

A difference amplifier based on two identical BJT transistors is showni and is to be operated in single-mode, difference-mode and comm applications.

Fig. 2.
(a) In a single-mode application, a small sinusoidal signal shown in below figure is fed to the input $v_{\text {in } 1}$ and the other input $v_{\text {in2 }}$ is grounded. Draw the output wave forms in v_{01} and v_{02} separately.

(b) Calculate the difference-mode gain A_{d} of the difference amplifier.
(c) Calculate the common-mode gain A_{c} of the difference amplifier.
(d) Hence, estimate CMMR of the the difference amplifier.

You may find the following relations are useful.

$$
A_{d}=\frac{R_{c}}{2 r_{e}} \text { and } A_{c}=\frac{-R_{c}}{r_{e}+2 R_{E}}
$$

Here, the symbols have their usual meanings.

Q3. (i) Briefly explain what is meant by 'feedback' in an electronic circuit.
(ii) Show that the closed loop gain A_{f} of a feedback loop is given in te loop gain A_{0} and voltage feedback fraction B as

$$
\frac{A_{0}}{1+B A_{0}} .
$$

(iii) By considering the voltage series feedback topology, show that the loop voltage gain A_{f} of the non-inverting operational amplifier shown in Fig.3, is given by

$$
A_{f}=1+\frac{R_{1}}{R_{2}}
$$

Fig. 3.
(iv) Also, show that the input resistance R_{f} of the non-inverting opt amplifier circuitis given by

$$
R_{f}=R_{i}\left(1+B A_{0}\right),
$$

where A_{0} and R_{i} are the opened loop gain and the opened 10 resistance of the operational amplifier respectively and B is thi $(b$ feedback fraction.
(v) Calculate the voltage gain A_{f} and the input resistance R_{f}, if R_{F} $R_{2}=1 \mathrm{k} \Omega, A_{0}=100000$ and $R_{\mathrm{i}}=2 \mathrm{M} \Omega$.

Discuss the features of the non-inverting operational amplifier given below.

A BCD to seven-segment display decorder has four inputs ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D) and seven outputs. Each output drives one segment of the display. A logic 1 output causes the segment to be lit.

(a) Establish a truth table for the decorder outputs that display the decimal numbers $0,1,2 \ldots . .9$. Here, ' A ' and ' D ' refer the least significant digit and the most significant digit of the decorder respectively.
(b) Using a four variable Karnaugh map, obtain the minimized logic sum of product expression to illuminate the segment 'b'.
(c) Realize the logic expression using only NAND gates.

Q5. Draw the logic symbol and the truth table for the output of a $J-K$ flip-flop. A ripple counter to the follwing state diagram is to be designed using J flops.

(a) State how many J - K flip-flops are required to design the counter.
(b) Construct a truth table in order to design a logic system to fee inputs of $J-K$ flip-flops.
(c) Using Karnaugh map or otherwise, identify the logic expressions input of the $J-K$ flip-flops.
(d) Construct the Bush truth table and the state diagram to the counter
(e) Draw the necessary logic diagram to construct the counter using flip-flops.

You may find the following state transition table useful.

	$0 \rightarrow 0$	$0 \rightarrow 1$	$1 \rightarrow 0$	$1 \rightarrow 1$
J	0	1	X	X
K	X	X	1	0

(i) Briefly explain what is meant by 'Resolution’ of Analogue/Digital conversion and also, write down an equation for the percent resolution of it.
(ii) Determine the percent resolution of a five-bit digital to analogue (D/A) converter.
(iii) The weighted resistor network of a summing network and amplifier of a digital to analogue converter is given below. Construct a table of analogue output level corresponding to all possible binary input quantities 0000 through 1111.

