EASTERN UNIVERSITY, SRI LANKA

SPECIAL DEGREE EXAMINATION IN SCIENCE – 2011/2012

(SEPTEMBER/OCTOBER - 2016)

PH 410 SUPERCONDUCTIVITY

27 OCT 2017

e: 02 hour

wer ALL Questions

- (a) Describe briefly the Meissner Effect as applied to the superconducting state.
- (b) Define the critical magnetic field (H_c) of a superconductor and sketch the variation of the critical magnetic field (H_c) with temperature (T) for a superconductor.
- (c) Distinguish between Type I and Type II superconductors giving examples for each case.
- (d) Sketch the variation of magnetization (M) with applied magnetic field (B_a) for Type I and Type II superconductors.

Outline the main features of the BCS theory in explaining the phenomenon of uperconductivity in metals and alloys paying a particular attention to the following ases

- a) the "electron-phonon interaction" and
- b) "Isotope Effect".
- c) according to the BCS theory of superconductivity, the value of the energy gap (in eV, at zero temperature) is given by $E_g = 3.5 \ kT_c$, where k is the Boltzmann constant and T_c is the critical temperature of the superconducting material.

Compute the value of E_g (in eV) for lead if $k = 8.62 \times 10^{-5}$ eV/K and T_c is 7.2 K for lead.

03. The temperature dependence of the critical field strength in a supercondu approximately parabolic and given by the relation:

$$B_c(T) = B_c(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

where $B_c(0)$ is the extrapolated value of the critical field strength at absolute z02 $T_{\rm c}$ is the critical temperature.

- (a) Sketch the variation of $B_c(T)$ with T for a superconductor.
- (b) For Nb₃Ge superconductor, the critical temperature T_c is 23.2 K and the N magnetic field at 0 K is $B_c(0) = 34.0$ Tesla. Calculate the critical magnet for this material at 15 K.
- 04. (a) What are High Temperature Superconductors?
 - (b) Give the chemical compositions and approximate T_c values of four difference temperature superconducting materials.
 - (c) How would you synthesize and characterize a sample of Y-Ba-CuO basic temperature superconducting material in the laboratory?